论文标题

组合持续的同源性转换

Combinatorial Persistent Homology Transform

论文作者

Fasy, Brittany Terese, Patel, Amit

论文摘要

最近证明,将持续图作为Möbius倒置的组合解释是函数的。我们采用这一发现来将几何复合物的持续同源转换重塑为$ \ mathbb {s}^n $在组合持续图的类别上的电池的表示。提供了详细的示例。我们希望对pH变换的这种重铸将允许采用从代数和拓扑组合学到形状研究的现有方法。

The combinatorial interpretation of the persistence diagram as a Möbius inversion was recently shown to be functorial. We employ this discovery to recast the Persistent Homology Transform of a geometric complex as a representation of a cellulation on $\mathbb{S}^n$ to the category of combinatorial persistence diagrams. Detailed examples are provided. We hope this recasting of the PH transform will allow for the adoption of existing methods from algebraic and topological combinatorics to the study of shapes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源