论文标题
自适应入学控制安全至关重要的物理机器人合作
Adaptive Admittance Control for Safety-Critical Physical Human Robot Collaboration
论文作者
论文摘要
人体机器人的合作需要严格的安全保证,因为机器人和人类在共享工作空间中工作。这封信提出了一个新颖的控制框架,以处理针对人类机器人互动的基于安全至关重要的位置的约束。所提出的方法基于入学控制,指数控制屏障功能(ECBFS)和二次程序(QP),以在人与机器人之间的力相互作用期间达到合规性,同时保证安全约束。特别是,入学控制的公式被重写为二阶非线性控制系统,并且人与机器人之间的相互作用力被视为控制输入。通过将欧洲央行-QP框架作为外部人类力量的补偿器,实时提供了用于入学控制的虚拟力反馈。因此,一个安全轨迹来自为低级控制器所提出的自适应入学控制方案。拟议方法的创新是,提议的控制器将使机器人能够自然流动性遵守人类力量,而无需违反任何安全限制,即使在人类外部力量偶然地迫使机器人违反约束的情况下。在对两链平面机器人操纵器的模拟研究中,我们的方法的有效性得到了证明。
Physical human-robot collaboration requires strict safety guarantees since robots and humans work in a shared workspace. This letter presents a novel control framework to handle safety-critical position-based constraints for human-robot physical interaction. The proposed methodology is based on admittance control, exponential control barrier functions (ECBFs) and quadratic program (QP) to achieve compliance during the force interaction between human and robot, while simultaneously guaranteeing safety constraints. In particular, the formulation of admittance control is rewritten as a second-order nonlinear control system, and the interaction forces between humans and robots are regarded as the control input. A virtual force feedback for admittance control is provided in real-time by using the ECBFs-QP framework as a compensator of the external human forces. A safe trajectory is therefore derived from the proposed adaptive admittance control scheme for a low-level controller to track. The innovation of the proposed approach is that the proposed controller will enable the robot to comply with human forces with natural fluidity without violation of any safety constraints even in cases where human external forces incidentally force the robot to violate constraints. The effectiveness of our approach is demonstrated in simulation studies on a two-link planar robot manipulator.