论文标题

人类流动性预测中的隐私感知对抗网络

Privacy-Aware Adversarial Network in Human Mobility Prediction

论文作者

Zhan, Yuting, Haddadi, Hamed, Mashhadi, Afra

论文摘要

随着移动设备和基于位置的服务越来越多地在不同的智能城市场景和应用程序中开发,由于数据收集和共享,许多意外的隐私泄漏已经出现。当与云辅助应用程序共享地理位置数据时,用户重新识别和其他敏感的推论是主要的隐私威胁。值得注意的是,四个时空点足以唯一地识别95%的个人,这加剧了个人信息泄漏。为了解决诸如用户重新识别的恶意目的,我们提出了一种基于LSTM的对抗机制,具有代表性学习,以实现原始地理位置数据(即移动性数据)以实现共享目的的保护隐私功能表示。这些表示形式旨在最大程度地减少用户重新识别和完整数据重建的机会,并以最小的实用性预算(即损失)减少。我们通过量化轨迹重建风险,用户重新识别风险和移动性可预测性来量化移动性数据集的隐私 - 实用性权衡来训练该机制。我们报告了探索性分析,该分析使用户能够通过特定的损失功能及其权重参数评估此权衡。四个代表性移动数据集的广泛比较结果表明,我们提出的架构在移动性隐私保护方面的优越性以及提议的隐私权提取器提取器的效率。我们表明,出行痕迹的隐私性以边际移动公用事业为代价获得了体面的保护。我们的结果还表明,通过探索帕累托最佳设置,我们可以同时增加隐私(45%)和公用事业(32%)。

As mobile devices and location-based services are increasingly developed in different smart city scenarios and applications, many unexpected privacy leakages have arisen due to geolocated data collection and sharing. User re-identification and other sensitive inferences are major privacy threats when geolocated data are shared with cloud-assisted applications. Significantly, four spatio-temporal points are enough to uniquely identify 95\% of the individuals, which exacerbates personal information leakages. To tackle malicious purposes such as user re-identification, we propose an LSTM-based adversarial mechanism with representation learning to attain a privacy-preserving feature representation of the original geolocated data (i.e., mobility data) for a sharing purpose. These representations aim to maximally reduce the chance of user re-identification and full data reconstruction with a minimal utility budget (i.e., loss). We train the mechanism by quantifying privacy-utility trade-off of mobility datasets in terms of trajectory reconstruction risk, user re-identification risk, and mobility predictability. We report an exploratory analysis that enables the user to assess this trade-off with a specific loss function and its weight parameters. The extensive comparison results on four representative mobility datasets demonstrate the superiority of our proposed architecture in mobility privacy protection and the efficiency of the proposed privacy-preserving features extractor. We show that the privacy of mobility traces attains decent protection at the cost of marginal mobility utility. Our results also show that by exploring the Pareto optimal setting, we can simultaneously increase both privacy (45%) and utility (32%).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源