论文标题
神经租赁:可证明有力的指导和控制遇到星际对象
Neural-Rendezvous: Provably Robust Guidance and Control to Encounter Interstellar Objects
论文作者
论文摘要
星际对象(ISO)可能是原始材料的代表,在理解系外星系中无价。然而,由于其倾斜度通常很高的倾斜度和相对速度的约束轨道较差,因此,使用常规的人类在环境中探索ISO非常具有挑战性。本文介绍了神经汇聚 - 一种基于深度学习的指导和控制框架,用于遇到快速移动的对象,包括ISOS,稳健,准确和实时自治。它在指导策略之上使用最小规范跟踪控制,该指南策略以频谱归一化的深神经网络建模,在该策略中,其超级参数的损失函数直接对MPC状态轨迹跟踪误差进行了调整。我们表明,神经汇聚期在预期的航天器递送误差上提供了高概率指数结合,其利用随机增量稳定性分析的证明。特别是,它用于构建具有超级属性属性的非负功能,明确考虑了ISO状态不确定性和非线性状态估计保证的本地性质。在数值模拟中,证明了神经汇总以满足100个ISO候选物的预期误差。该性能还通过我们的航天器模拟器以及高冲突和分布的无人机重新配置,最多可使用20个无人机进行经验验证。
Interstellar objects (ISOs) are likely representatives of primitive materials invaluable in understanding exoplanetary star systems. Due to their poorly constrained orbits with generally high inclinations and relative velocities, however, exploring ISOs with conventional human-in-the-loop approaches is significantly challenging. This paper presents Neural-Rendezvous -- a deep learning-based guidance and control framework for encountering fast-moving objects, including ISOs, robustly, accurately, and autonomously in real time. It uses pointwise minimum norm tracking control on top of a guidance policy modeled by a spectrally-normalized deep neural network, where its hyperparameters are tuned with a loss function directly penalizing the MPC state trajectory tracking error. We show that Neural-Rendezvous provides a high probability exponential bound on the expected spacecraft delivery error, the proof of which leverages stochastic incremental stability analysis. In particular, it is used to construct a non-negative function with a supermartingale property, explicitly accounting for the ISO state uncertainty and the local nature of nonlinear state estimation guarantees. In numerical simulations, Neural-Rendezvous is demonstrated to satisfy the expected error bound for 100 ISO candidates. This performance is also empirically validated using our spacecraft simulator and in high-conflict and distributed UAV swarm reconfiguration with up to 20 UAVs.