论文标题

aoc;组装重叠的社区

AOC; Assembling Overlapping Communities

论文作者

Jakatdar, Akhil, Liu, Baqiao, Warnow, Tandy, Chacko, George

论文摘要

通过发现中级结构,社区检测方法有助于对复杂网络的理解。但是,许多社区发现方法依赖于不相交的聚类技术,其中节点成员资格仅限于一个社区或集群。这项严格的要求限制了包容性描述社区的能力,因为某些节点可能会合理地分配给许多社区。我们以前已经报道了迭代K核心聚类(IKC),这是一种可扩展的模块化管道,发现与科学文献的脱节研究社区。现在,我们提出了组装重叠簇(AOC),这是一种重叠社区的补充元方法,作为解决分离聚类问题的选项。我们介绍了在超过1300万个节点网络上使用AOC的发现,该网络捕获了生物学中细胞外囊泡非常快速增长的领域的最新研究。

Through discovery of meso-scale structures, community detection methods contribute to the understanding of complex networks. Many community finding methods, however, rely on disjoint clustering techniques, in which node membership is restricted to one community or cluster. This strict requirement limits the ability to inclusively describe communities since some nodes may reasonably be assigned to many communities. We have previously reported Iterative K-core Clustering (IKC), a scalable and modular pipeline that discovers disjoint research communities from the scientific literature. We now present Assembling Overlapping Clusters (AOC), a complementary meta-method for overlapping communities as an option that addresses the disjoint clustering problem. We present findings from the use of AOC on a network of over 13 million nodes that captures recent research in the very rapidly growing field of extracellular vesicles in biology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源