论文标题

TGX状态在Qubit-Qutrit系统中的纠缠普遍性

Entanglement Universality of TGX States in Qubit-Qutrit Systems

论文作者

Hedemann, Samuel R.

论文摘要

我们证明,所有状态(混合或纯)的Qubit-Qutrit($ 2 \ times 3 $)系统具有纠缠的统一(EPU)等效性,与真实征收X(TGX)的紧凑子集称为EPU-MINIMAL TGX状态,我们给出了我们明确的。因此,对于一般状态可实现的任何光谱 - 输入组合,存在相同光谱和纠缠的EPU最小TGX状态。我们使用i电流来测量纠缠并为其提供明确的公式,以所有$ 2 \ times 3 $ 3 $最小的TGX状态(比混合或纯净的epu-wimimal TGX状态),无论是混合还是纯度),从而产生其在所有分解中的最低平均值。我们还为一个称为最小的超级征收X(SGX)状态的更通用的家族提供了可计算的i频率公式,并为最小的SGX状态及其所有子集提供了最佳分解。

We prove that all states (mixed or pure) of qubit-qutrit ($2\times 3$) systems have entanglement-preserving unitary (EPU) equivalence to a compact subset of true-generalized X (TGX) states called EPU-minimal TGX states which we give explicitly. Thus, for any spectrum-entanglement combination achievable by general states, there exists an EPU-minimal TGX state of the same spectrum and entanglement. We use I-concurrence to measure entanglement and give an explicit formula for it for all $2\times 3$ minimal TGX states (a more general set than EPU-minimal TGX states) whether mixed or pure, yielding its minimum average value over all decompositions. We also give a computable I-concurrence formula for a more general family called minimal super-generalized X (SGX) states, and give optimal decompositions for minimal SGX states and all of their subsets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源