论文标题

快速O_ {预期}(n)算法,用于在E^2中找到精确的最大距离,而不是O(n^2)或O(n lg n)

Fast O_{expected}(N) Algorithm for Finding Exact Maximum Distance in E^2 Instead of O(N^2) or O(N lg N)

论文作者

Skala, Vaclav

论文摘要

本文描述了具有O(n)预期复杂性的新颖,快速,简单且健壮的算法,这使得在E2中找到了两个点的确切最大距离所需的运行时。已在较大的不同数据集上对所提出的算法进行了实验评估。当处理中和大数据集时,所提出的算法对应用程序进行了显着加速。它的速度超过10 000倍,在E2中随机分布点的10^6点的标准算法要快。实验证明了所提出的算法比标准算法和凸壳直径接近的优势。

This paper describes novel and fast, simple and robust algorithm with O(N) expected complexity which enables to decrease run-time needed to find an exact maximum distance of two points in E2. The proposed algorithm has been evaluated experimentally on larger different datasets. The proposed algorithm gives a significant speed-up to applications, when medium and large data sets are processed. It is over 10 000 times faster than the standard algorithm for 10^6 points randomly distributed points in E2. Experiments proved the advantages of the proposed algorithm over the standard algorithm and convex hull diameters approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源