论文标题

双层抗铁磁铁中孔的平衡和非平衡动力学

Equilibrium and non-equilibrium dynamics of a hole in a bilayer antiferromagnet

论文作者

Nyhegn, Jens H., Nielsen, Kristian K., Bruun, Georg M.

论文摘要

量子旋转晶格中电荷载体的动态是一个长期存在的基本问题。最近,出现了基于光学晶格中原子的新一代量子模拟实验,从而使该问题的详细空间和时间动态具有前所未有的见解,该问题早些时候是由凝结物质实验所致。在这些新实验中,我们专注于可观察到的物品,我们在这里探索了两个耦合的抗铁磁型自旋晶格中移动孔的平衡以及非平衡动力学。使用自洽的出生近似,我们计算双层中孔的光谱特性,并提取准粒子的能带,对应于层交换下的对称或反对称的磁极。由于抗磁对称性,这两种极性子在某些动量上是退化的,而且我们此外,研究基态极性的动量如何取决于层间耦合强度。最初在一层中产生的孔的长时间动力学被证明其特征是两层之间的振荡,其频率由对称和抗对称偏振子之间的能量差给定。我们最终证明,最初在给定的晶格位点创建的孔的膨胀速度受极性子的弹道运动的控制。此外,它非单调地取决于层间耦合,最终随着量子相变为无序状态而增加。

The dynamics of charge carriers in lattices of quantum spins is a long standing and fundamental problem. Recently, a new generation of quantum simulation experiments based on atoms in optical lattices has emerged that gives unprecedented insights into the detailed spatial and temporal dynamics of this problem, which compliments earlier results from condensed matter experiments. Focusing on observables accessible in these new experiments, we explore here the equilibrium as well as non-equilibrium dynamics of a mobile hole in two coupled antiferromagnetic spin lattices. Using a self-consistent Born approximation, we calculate the spectral properties of the hole in the bilayer and extract the energy bands of the quasiparticles, corresponding to magnetic polarons that are either symmetric or anti-symmetric under layer exchange. These two kinds of polarons are degenerate at certain momenta due to the antiferromagnetic symmetry, and we, furthermore, examine how the momentum of the ground state polaron depends on the interlayer coupling strength. The long time dynamics of a hole initially created in one layer is shown to be characterised by oscillations between the two layers with a frequency given by the energy difference between the symmetric and the anti-symmetric polaron. We finally demonstrate that the expansion velocity of a hole initially created at a given lattice site is governed by the ballistic motion of polarons. It moreover depends non-monotonically on the interlayer coupling, eventually increasing as a quantum phase transition to a disordered state is approached.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源