论文标题
通过小波的标准化流量,有效地分布式分布检测
Efficient Out-of-Distribution Detection of Melanoma with Wavelet-based Normalizing Flows
论文作者
论文摘要
黑色素瘤是一种严重的皮肤癌,在后期阶段具有高死亡率。幸运的是,当早期发现时,黑色素瘤的预后是有希望的,恶性黑色素瘤的发病率相对较低。结果,数据集严重不平衡,这使培训当前的最新监督分类AI模型变得复杂。我们建议使用生成模型来学习良性数据分布并通过密度估计检测出分布(OOD)恶性图像。标准化流(NFS)是OOD检测的理想候选者,因为它们能够计算精确的可能性。然而,它们的感应偏见对明显的图形特征,而不是语义上下文障碍障碍的OOD检测。在这项工作中,我们旨在将这些偏见与黑色素瘤的领域水平知识一起使用,以改善基于可能性的OOD检测恶性图像。我们令人鼓舞的结果表明,使用NFS检测黑色素瘤的可能性。通过使用基于小波的NFS,我们在接收器工作特性的曲线下,面积增加了9%。该模型需要较少的参数,以使其更适用于边缘设备。提出的方法可以帮助医学专家诊断出皮肤癌患者的诊断并不断提高存活率。此外,这项研究为存在类似数据不平衡问题的肿瘤学领域铺平了道路。
Melanoma is a serious form of skin cancer with high mortality rate at later stages. Fortunately, when detected early, the prognosis of melanoma is promising and malignant melanoma incidence rates are relatively low. As a result, datasets are heavily imbalanced which complicates training current state-of-the-art supervised classification AI models. We propose to use generative models to learn the benign data distribution and detect Out-of-Distribution (OOD) malignant images through density estimation. Normalizing Flows (NFs) are ideal candidates for OOD detection due to their ability to compute exact likelihoods. Nevertheless, their inductive biases towards apparent graphical features rather than semantic context hamper accurate OOD detection. In this work, we aim at using these biases with domain-level knowledge of melanoma, to improve likelihood-based OOD detection of malignant images. Our encouraging results demonstrate potential for OOD detection of melanoma using NFs. We achieve a 9% increase in Area Under Curve of the Receiver Operating Characteristics by using wavelet-based NFs. This model requires significantly less parameters for inference making it more applicable on edge devices. The proposed methodology can aid medical experts with diagnosis of skin-cancer patients and continuously increase survival rates. Furthermore, this research paves the way for other areas in oncology with similar data imbalance issues.