论文标题

在电池驱动的客户上进行能源意识的联合学习

Towards Energy-Aware Federated Learning on Battery-Powered Clients

论文作者

Arouj, Amna, Abdelmoniem, Ahmed M.

论文摘要

联合学习(FL)是AI的新出现的分支,它有助于边缘设备进行协作训练全球机器学习模型,而无需集中数据并默认使用隐私。但是,尽管进步显着,但这种范式面临着各种挑战。具体而言,在大规模部署中,客户异质性是影响培训质量(例如准确性,公平性和时间)的规范。此外,在这些电池约束的设备上的能耗在很大程度上没有探索,这是FL的广泛采用的限制。为了解决这个问题,我们开发了EAFL,这是一种能源感知的FL选择方法,该方法考虑了能源消耗以最大程度地吸收异质目标设备的参与。 EAFL是一种功能感知的培训算法,它的电池水平较高的客户以及其最大化系统效率的能力。我们的设计共同最大程度地减少了临界时间,并最大程度地提高了其余的电池电池水平。 Eaflimproves测试模型的准确性高达85 \%,并使客户的辍学率最高为2.45 $ \ times $。

Federated learning (FL) is a newly emerged branch of AI that facilitates edge devices to collaboratively train a global machine learning model without centralizing data and with privacy by default. However, despite the remarkable advancement, this paradigm comes with various challenges. Specifically, in large-scale deployments, client heterogeneity is the norm which impacts training quality such as accuracy, fairness, and time. Moreover, energy consumption across these battery-constrained devices is largely unexplored and a limitation for wide-adoption of FL. To address this issue, we develop EAFL, an energy-aware FL selection method that considers energy consumption to maximize the participation of heterogeneous target devices. EAFL is a power-aware training algorithm that cherry-picks clients with higher battery levels in conjunction with its ability to maximize the system efficiency. Our design jointly minimizes the time-to-accuracy and maximizes the remaining on-device battery levels. EAFLimproves the testing model accuracy by up to 85\% and decreases the drop-out of clients by up to 2.45$\times$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源