论文标题
多细胞大型MIMO系统具有低分辨率数据转换器
Coordinated Per-Antenna Power Minimization for Multicell Massive MIMO Systems with Low-Resolution Data Converters
论文作者
论文摘要
当使用低分辨率数据转换器和Per-Antenna级别约束时,介绍了用于大量多输入多输入正交频线多路复用(OFDM)系统的多细胞协调的波束形成解决方案(OFDM)。为了进行更现实的部署,我们旨在找到下行链路(DL)光束形式,该波束形式可最大程度地减少在接收到的信号质量约束下,在每个基地的传输天线阵列中的最大功率,同时最大程度地减少En-Antenna发射功率。我们表明,原始DL公式与其可管理的拉格朗日双重问题之间存在强大的双重性,可以将其解释为具有可调噪声协方差矩阵的虚拟上行链路(UL)问题。对于固定的噪声协方差矩阵,我们声称虚拟UL解决方案有效地用于计算DL波束形式和噪声协方差矩阵,可以随后使用相关的亚级别进行更新。然后,我们的主要贡献是(1)制定量化的DL天线功率最小值问题并得出其相关的双重问题,(2)表现出强双重性并将双重性解释为虚拟量化的UL OFDM问题,并且(3)基于双重问题而开发迭代的Minimax算法。模拟根据最大天线传输功率和峰值与平均功率比验证了所提出的算法。
A multicell-coordinated beamforming solution for massive multiple-input multiple-output orthogonal frequency-division multiplexing (OFDM) systems is presented when employing low-resolution data converters and per-antenna level constraints. For a more realistic deployment, we aim to find the downlink (DL) beamformer that minimizes the maximum power on transmit antenna array of each basestation under received signal quality constraints while minimizing per-antenna transmit power. We show that strong duality holds between the primal DL formulation and its manageable Lagrangian dual problem which can be interpreted as the virtual uplink (UL) problem with adjustable noise covariance matrices. For a fixed set of noise covariance matrices, we claim that the virtual UL solution is effectively used to compute the DL beamformer and noise covariance matrices can be subsequently updated with an associated subgradient. Our primary contributions are then (1) formulating the quantized DL OFDM antenna power minimax problem and deriving its associated dual problem, (2) showing strong duality and interpreting the dual as a virtual quantized UL OFDM problem, and (3) developing an iterative minimax algorithm based on the dual problem. Simulations validate the proposed algorithm in terms of the maximum antenna transmit power and peak-to-average-power ratio.