论文标题
同型时板公理的严格定理
Strictification theorems for the homotopy time-slice axiom
论文作者
论文摘要
事实证明,对于许多类型的代数量子场理论(AQFTS),在链复合物中采用值的同型时板公理可以严格化。这包括在固定的全球双曲线洛伦兹歧管上的Haag-kastler型AQFTS(有或没有时间样边界),在两个时空维度中的局部协变量AQFTS,一个局部协方差的aqfts,一个局部协方差的aqfts,在一个时空尺寸中的AQFTS,以及相对的cauchy进化。本文确定的严格化定理证明,在适用于上述示例的合适假设下,在满足同质时间层公理的AQFTS的模型类别之间存在质量等效性,使同型时间层公理与满足AQFTS的模型类别满足了平常的严格时板式套件。
It is proven that the homotopy time-slice axiom for many types of algebraic quantum field theories (AQFTs) taking values in chain complexes can be strictified. This includes the cases of Haag-Kastler-type AQFTs on a fixed globally hyperbolic Lorentzian manifold (with or without time-like boundary), locally covariant conformal AQFTs in two spacetime dimensions, locally covariant AQFTs in one spacetime dimension, and the relative Cauchy evolution. The strictification theorems established in this paper prove that, under suitable hypotheses that hold true for the examples listed above, there exists a Quillen equivalence between the model category of AQFTs satisfying the homotopy time-slice axiom and the model category of AQFTs satisfying the usual strict time-slice axiom.