论文标题
通过机器学习将特性与液态金属嵌入弹性体中的微观结构链接
Linking Properties to Microstructure in Liquid Metal Embedded Elastomers via Machine Learning
论文作者
论文摘要
将液体金属(LM)嵌入弹性体基质中,以获得具有独特的热,介电和机械性能的软复合材料。他们在软机器人技术,生物医学工程和可穿戴电子产品中有应用。通过将结构与这些材料的性质联系起来,可以合理地执行材料设计。液态 - 金属嵌入式弹性体(LMEES)已通过分别自动编码器网络(VAE)中的结构 - 特征(SP)链路的半监督学习来针对靶向电动机械特性。设计参数是物理上有意义的微结构描述符,并且与所研究的颗粒复合材料的合成具有仿射关系。机器学习(ML)模型在以其多功能属性数量为标签的微结构描述符的生成数据集上进行了训练。 SOBOL序列通过对设计空间进行采样以通过包装算法来生成3D微观结构实现的全面数据集,用于实验的内部设计(DOE)。考虑到LM夹杂物引起的表面张力,而线性热和介电常数在我们的内部快速傅立叶变换(FFT)套件的帮助下,使用线性热和介电常数均质化,使用先前开发的有限元(FE)模型模拟生成的微观结构的机械响应。通过最小化适当的损耗函数训练后,VAE编码器充当多功能均质化数值求解器的替代物,其解码器用于材料设计。我们的结果表明,相对于用LMEE实验结果验证的高保真数值模拟,替代模型和反计算器的令人满意的性能。
Liquid metals (LM) are embedded in an elastomer matrix to obtain soft composites with unique thermal, dielectric, and mechanical properties. They have applications in soft robotics, biomedical engineering, and wearable electronics. By linking the structure to the properties of these materials, it is possible to perform material design rationally. Liquid-metal embedded elastomers (LMEEs) have been designed for targeted electro-thermo-mechanical properties by semi-supervised learning of structure-property (SP) links in a variational autoencoder network (VAE). The design parameters are the microstructural descriptors that are physically meaningful and have affine relationships with the synthetization of the studied particulate composite. The machine learning (ML) model is trained on a generated dataset of microstructural descriptors with their multifunctional property quantities as their labels. Sobol sequence is used for in-silico Design of Experiment (DoE) by sampling the design space to generate a comprehensive dataset of 3D microstructure realizations via a packing algorithm. The mechanical responses of the generated microstructures are simulated using a previously developed Finite Element (FE) model, considering the surface tension induced by LM inclusions, while the linear thermal and dielectric constants are homogenized with the help of our in-house Fast Fourier Transform (FFT) package. Following the training by minimization of an appropriate loss function, the VAE encoder acts as the surrogate of numerical solvers of the multifunctional homogenizations, and its decoder is used for the material design. Our results indicate the satisfactory performance of the surrogate model and the inverse calculator with respect to high-fidelity numerical simulations validated with LMEE experimental results.