论文标题

容量受限乘车舰队的集体动态

Collective dynamics of capacity-constrained ride-pooling fleets

论文作者

Zech, Robin M., Molkenthin, Nora, Timme, Marc, Schröder, Malte

论文摘要

乘车通行(或乘车共享)服务将多个客户的旅行沿着类似的路线组合为单车。乘车车辆的集体动态从根本上讲是这些服务效率的基础。在简化的模型中,这些动态的共同特征会导致效率的扩展定律,这些定律在各种街道网络和需求环境中有效。但是,目前尚不清楚车队的限制如何影响这种缩放定律。在这里,我们将容量受限的乘车舰队的集体动态映射到具有无限乘客容量的服务,并确定可用车辆的有效机队尺寸作为表征动态的相关缩放参数。利用此映射,我们将乘车效率的规模定律推广到容量约束的车队。我们通过对最小模型系统中的动力学进行排队的理论分析来近似缩放函数,从而在更复杂的设置中实现了所需车队规模的平均场景预测。这些结果可能有助于将洞察力从现有的乘车服务转移到新的环境或服务地点。

Ride-pooling (or ride-sharing) services combine trips of multiple customers along similar routes into a single vehicle. The collective dynamics of the fleet of ride-pooling vehicles fundamentally underlies the efficiency of these services. In simplified models, the common features of these dynamics give rise to scaling laws of the efficiency that are valid across a wide range of street networks and demand settings. However, it is unclear how constraints of the vehicle fleet impact such scaling laws. Here, we map the collective dynamics of capacity-constrained ride-pooling fleets to services with unlimited passenger capacity and identify an effective fleet size of available vehicles as the relevant scaling parameter characterizing the dynamics. Exploiting this mapping, we generalize the scaling laws of ride-pooling efficiency to capacity-constrained fleets. We approximate the scaling function with a queueing theoretical analysis of the dynamics in a minimal model system, thereby enabling mean-field predictions of required fleet sizes in more complex settings. These results may help to transfer insights from existing ride-pooling services to new settings or service locations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源