论文标题
圆盘周围圆盘的快速淋巴结进程需要圆盘损坏
Fast nodal precession of the disc around Pleione requires a broken disc
论文作者
论文摘要
普莱昂(Pleione)是一颗恒星,在218天的轨道上,有一个低质量的二进制伴侣。最近的数值模拟表明,当材料被积极馈入盘的内部时,恒星光盘可能会破裂。断裂后,圆盘由两个环组成:一个固定在恒星赤道的内环和一个自由到鼻孔的外环。双环光盘可能解释了普莱恩观察到的一些变异性。我们对同伴在观察到的$ 80.5 \,\ rm yr $驱动的外盘环的节点进行建模。我们发现,二进制中折断的圆盘的外环,偏心率为$ e _ {\ rm b} = 0.6 $可以在观察到的时间表上进行预丝,并且具有与观察到的圆盘大小的外部半径。一个不间断的盘模型不能符合观察到的进动率和圆盘尺寸。如果圆盘延伸至潮汐截断半径,则抑制Kozai-Lidov驱动的圆盘偏心率更可能是高二元偏心率的。
Pleione is a Be star that is in a 218 day orbit with a low-mass binary companion. Recent numerical simulations have shown that a Be star disc can be subject to breaking when material is actively being fed into the inner parts of the disc. After breaking, the disc is composed of two rings: an inner ring that is anchored to the stellar equator and an outer ring that is free to nodally precess. A double ring disc may explain some of the observed variability in Pleione. We model the nodal precession of the outer disc ring that is driven by the companion on an observed timescale of $80.5\,\rm yr$. We find that the outer ring of a broken disc in a binary with an eccentricity of $e_{\rm b}= 0.6$ can precess on the observed timescale and have an outer radius that is in rough agreement with the observed disc size. An unbroken disc model cannot fit both the observed precession rate and disc size. Suppression of Kozai-Lidov driven disc eccentricity is more likely for a high binary eccentricity if the disc extends to the tidal truncation radius.