论文标题

八年的面部识别研究:可重复性,成就和开放问题

Eight Years of Face Recognition Research: Reproducibility, Achievements and Open Issues

论文作者

Pereira, Tiago de Freitas, Schmidli, Dominic, Linghu, Yu, Zhang, Xinyi, Marcel, Sébastien, Günther, Manuel

论文摘要

自动面部识别是一个知名的研究领域。在该领域的最后三十年的深入研究中,已经提出了许多不同的面部识别算法。随着深度学习的普及及其解决各种不同问题的能力,面部识别研究人员集中精力在此范式下创建更好的模型。从2015年开始,最先进的面部识别就植根于深度学习模型。尽管有大规模和多样化的数据集可用于评估面部识别算法的性能,但许多现代数据集仅结合了影响面部识别的不同因素,例如面部姿势,闭塞,照明,面部表情和图像质量。当算法在这些数据集上产生错误时,尚不清楚哪些因素导致了此错误,因此,没有指导需要多个方向进行更多的研究。这项工作是我们以前在2014年开发的作品的后续作品,最终于2016年发表,显示了各种面部方面对面部识别算法的影响。通过将当前的最新技术与过去的最佳系统进行比较,我们证明了面对强烈的遮挡,某些类型的照明和强烈表达的面孔是深入学习算法所掌握的问题,而具有低分辨率图像,极端姿势变化和开放设定的识别仍然是一个开放的问题。为了证明这一点,我们使用六个不同的数据集和五种不同的面部识别算法以开源和可重现的方式运行一系列实验。我们提供了运行所有实验的源代码,这很容易扩展,因此在我们的评估中利用自己的深网络只有几分钟的路程。

Automatic face recognition is a research area with high popularity. Many different face recognition algorithms have been proposed in the last thirty years of intensive research in the field. With the popularity of deep learning and its capability to solve a huge variety of different problems, face recognition researchers have concentrated effort on creating better models under this paradigm. From the year 2015, state-of-the-art face recognition has been rooted in deep learning models. Despite the availability of large-scale and diverse datasets for evaluating the performance of face recognition algorithms, many of the modern datasets just combine different factors that influence face recognition, such as face pose, occlusion, illumination, facial expression and image quality. When algorithms produce errors on these datasets, it is not clear which of the factors has caused this error and, hence, there is no guidance in which direction more research is required. This work is a followup from our previous works developed in 2014 and eventually published in 2016, showing the impact of various facial aspects on face recognition algorithms. By comparing the current state-of-the-art with the best systems from the past, we demonstrate that faces under strong occlusions, some types of illumination, and strong expressions are problems mastered by deep learning algorithms, whereas recognition with low-resolution images, extreme pose variations, and open-set recognition is still an open problem. To show this, we run a sequence of experiments using six different datasets and five different face recognition algorithms in an open-source and reproducible manner. We provide the source code to run all of our experiments, which is easily extensible so that utilizing your own deep network in our evaluation is just a few minutes away.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源