论文标题

深度计算模型,用于推理心室激活特性

Deep Computational Model for the Inference of Ventricular Activation Properties

论文作者

Li, Lei, Camps, Julia, Banerjee, Abhirup, Beetz, Marcel, Rodriguez, Blanca, Grau, Vicente

论文摘要

患者特异性的心脏计算模型对于使用数字双胞胎的精密医学和silico临床试验的有效实现至关重要。心脏数字双胞胎可以为个别患者提供心脏功能的非侵入性特征,因此对于患者特定的诊断和治疗分层有希望。但是,对于解剖学和功能性孪生阶段的当前工作流程,指的是模型解剖结构和临床数据的参数的推断,效率不够有效,鲁棒和准确。在这项工作中,我们提出了一个基于深度学习的特定于患者的计算模型,该模型可以融合解剖学和电生理信息,以推断心室激活特性,即传导速度和根节点。激活特性可以提供对心脏电生理功能的定量评估,以指导介入。我们采用Eikonal模型来生成具有地面真实特性的模拟心电图(ECG),以训练推理模型,在此还考虑了特定的患者信息。为了进行评估,我们在模拟数据上测试模型,并以快速的计算时间获得通常有希望的结果。

Patient-specific cardiac computational models are essential for the efficient realization of precision medicine and in-silico clinical trials using digital twins. Cardiac digital twins can provide non-invasive characterizations of cardiac functions for individual patients, and therefore are promising for the patient-specific diagnosis and therapy stratification. However, current workflows for both the anatomical and functional twinning phases, referring to the inference of model anatomy and parameter from clinical data, are not sufficiently efficient, robust, and accurate. In this work, we propose a deep learning based patient-specific computational model, which can fuse both anatomical and electrophysiological information for the inference of ventricular activation properties, i.e., conduction velocities and root nodes. The activation properties can provide a quantitative assessment of cardiac electrophysiological function for the guidance of interventional procedures. We employ the Eikonal model to generate simulated electrocardiogram (ECG) with ground truth properties to train the inference model, where specific patient information has also been considered. For evaluation, we test the model on the simulated data and obtain generally promising results with fast computational time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源