论文标题
有效的小部件包含合法的副件
Valid Widgets Contain Legal Subwidgets
论文作者
论文摘要
本文证明了与“小部件”的几何形状有关的线性代数结果。对我们来说,小部件是矢量空间中n对点的集合。 (对代表粒子的不同可能的自旋态。)我们研究了此类集合之间的线性关系。我们定理的推论是在Arxiv中猜想的:2208.02478V1它出现的目的是为了理解超级弦理论中的某些问题。在该论文中,当环境维度为n时,对带有拉姆蒙德穿刺的扰动超弦理论的调查需要特殊情况。在这里,我们证明了一般情况。
This paper proves a linear algebra result that has to do with the geometry of "widgets". For us a widget is a collection of n pairs of points in a vector space. (The pairs represent the different possible spin states of a particle.) We investigate linear relations among such collections. A corollary of our theorem was conjectured in arXiv:2208.02478v1 where it arose in an attempt to understand some issues in super string theory. In that paper an investigation of perturbative superstring theory with Ramond punctures required the special case when the ambient dimension is n. Here we prove the general case.