论文标题
朝向图表学习基于手术工作流程的预期
Towards Graph Representation Learning Based Surgical Workflow Anticipation
论文作者
论文摘要
手术工作流程的预期可以预测进行哪些步骤或下一步使用哪些工具,这是计算机辅助干预系统的重要组成部分,例如机器人手术中的工作流程推理。但是,当前的方法仅限于它们在工具之间关系的表达能力不足。因此,我们提出了一个图表学习框架,以全面地表示手术工作流期望问题中的仪器动作。在我们提出的图形表示中,我们将仪器的边界框信息映射到连续帧中的图节点,并构建框架间/插座图形边缘,以表示随着时间的推移仪器的轨迹和交互。这种设计增强了我们网络对手术仪器的空间和时间模式及其相互作用的建模能力。此外,我们设计了一种多匹马学习策略,以平衡对各种视野无动于衷的预期任务的理解,从而大大改善了各种视野的预期模型性能。 Cholec80数据集的实验证明了我们提出的方法的性能可以超过基于较富主轴的最新方法,尤其是在仪器预期中(1.27 v.s. 1.48 for Inmae; Emae的1.48 v.s. 2.68 v.s. 2.68)。据我们所知,我们是第一个将时空图表引入外科工作流程预期的人。
Surgical workflow anticipation can give predictions on what steps to conduct or what instruments to use next, which is an essential part of the computer-assisted intervention system for surgery, e.g. workflow reasoning in robotic surgery. However, current approaches are limited to their insufficient expressive power for relationships between instruments. Hence, we propose a graph representation learning framework to comprehensively represent instrument motions in the surgical workflow anticipation problem. In our proposed graph representation, we maps the bounding box information of instruments to the graph nodes in the consecutive frames and build inter-frame/inter-instrument graph edges to represent the trajectory and interaction of the instruments over time. This design enhances the ability of our network on modeling both the spatial and temporal patterns of surgical instruments and their interactions. In addition, we design a multi-horizon learning strategy to balance the understanding of various horizons indifferent anticipation tasks, which significantly improves the model performance in anticipation with various horizons. Experiments on the Cholec80 dataset demonstrate the performance of our proposed method can exceed the state-of-the-art method based on richer backbones, especially in instrument anticipation (1.27 v.s. 1.48 for inMAE; 1.48 v.s. 2.68 for eMAE). To the best of our knowledge, we are the first to introduce a spatial-temporal graph representation into surgical workflow anticipation.