论文标题

说服风险意识的代理:几何方法

Persuading Risk-Conscious Agents: A Geometric Approach

论文作者

Anunrojwong, Jerry, Iyer, Krishnamurthy, Lingenbrink, David

论文摘要

我们认为发件人和接收者之间的说服力问题在她的信念中可能是非线性的;我们称这种接收器的风险意识。当接收器表现出远离预期效果最大化的系统偏见时,例如不确定性厌恶(例如,从敏感性到服务的等待时间)时,就会出现这种效用模型。由于这种非线性,使用启示原则找到最佳说服机制的标准方法失败了。为了克服这一困难,我们使用问题的基本几何形状来开发凸优化框架以找到最佳的说服机制。我们定义了充分说服力的概念,并利用我们的框架来表征可以实现充分说服力的条件。我们使用我们的方法来研究二进制说服力,在该二元说话中,接收者有两种行动,并且发件人在每个州都更喜欢其中一个。在凸度的假设下,我们表明二进制说服问题减少了线性程序,并建立一组规范的信号,每个信号都会揭示状态或在两个状态之间的接收器不确定性中诱导。最后,我们讨论了我们的方法对更一般环境的更广泛的适用性,并通过研究服务系统中的等待时间的信息共享来说明我们的方法。

We consider a persuasion problem between a sender and a receiver whose utility may be nonlinear in her belief; we call such receivers risk-conscious. Such utility models arise when the receiver exhibits systematic biases away from expected-utility-maximization, such as uncertainty aversion (e.g., from sensitivity to the variance of the waiting time for a service). Due to this nonlinearity, the standard approach to finding the optimal persuasion mechanism using revelation principle fails. To overcome this difficulty, we use the underlying geometry of the problem to develop a convex optimization framework to find the optimal persuasion mechanism. We define the notion of full persuasion and use our framework to characterize conditions under which full persuasion can be achieved. We use our approach to study binary persuasion, where the receiver has two actions and the sender strictly prefers one of them at every state. Under a convexity assumption, we show that the binary persuasion problem reduces to a linear program, and establish a canonical set of signals where each signal either reveals the state or induces in the receiver uncertainty between two states. Finally, we discuss the broader applicability of our methods to more general contexts, and illustrate our methodology by studying information sharing of waiting times in service systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源