论文标题
关于BSDE的独特性结果,连续系数
On the uniqueness result for the BSDE with continuous coefficient
论文作者
论文摘要
在本文中,我们研究了一维向后的随机微分方程(简称BSDE),其系数$ f $是$ y $的Lipschitz,但仅在$ z $中连续。此外,如果终端条件$ξ$具有Malliavin衍生品的界限,则我们证明了BSDE的一些唯一性结果,分别在$ z $中具有二次和线性增长。
In this paper, we study one-dimensional backward stochastic differential equation (BSDE, for short), whose coefficient $f$ is Lipschitz in $y$ but only continuous in $z$. In addition, if the terminal condition $ξ$ has bounded Malliavin derivative, we prove some uniqueness results for the BSDE with quadratic and linear growth in $z$, respectively.