论文标题
基于量子场理论的量子信息:测量和相关性
Quantum Field Theory based Quantum Information: Measurements and Correlations
论文作者
论文摘要
这是一系列论文中的第一篇,旨在根据量子场理论中的不等时间相关函数来开发相对论量子信息理论。在这项工作中,我们强调了两种形式主义,可以共同提供一个有用的理论平台,适合进一步发展:1)使用量子时间概率(QTP)方法的量子场测量; 2)因果时间演变的封闭时间路径(CTP)形式主义。 QTP将检测器纳入量子描述中,同时强调测量记录是宏观的,并且可以用经典的时空坐标表示。我们首先提出了QTP公式的新的基本推导,以实现N测量事件的概率。然后,我们通过编写与关联的生成功能相关的明确公式来证明QTP与封闭式路径形式主义的关系。我们利用CTP形式主义的路径积分表示,以表达路径积分方面的概率。之后,我们提供了一些QTP形式主义的简单应用。特别是,我们展示了Unruh-Dewitt检测器模型以及Glauber的光反调理论如何看似限制案例。最后,由于量子相关性是相对论量子信息和测量中的关键概念,我们强调了CTP两粒子不可减少有效的有效作用的作用,这使人们能够利用我们所陈述的目的来利用非平衡量子场理论的资源。
This is the first in a series of papers aiming to develop a relativistic quantum information theory in terms of unequal-time correlation functions in quantum field theory. In this work, we highlight two formalisms which together can provide a useful theoretical platform suitable for further developments: 1) Quantum field measurements using the Quantum Temporal Probabilities (QTP) method; 2) Closed-Time-Path (CTP) formalism for causal time evolutions. QTP incorporates the detector into the quantum description, while emphasising that the records of measurement are macroscopic, and they can be expressed in terms of classical spacetime coordinates. We first present a new, elementary derivation of the QTP formulas for the probabilities of n measurement events. We then demonstrate the relation of QTP with the Closed-Time-Path formalism, by writing an explicit formula that relates the associated generating functionals. We exploit the path integral representation of the CTP formalism, in order to express the measured probabilities in terms of path integrals. After this, we provide some simple applications of the QTP formalism. In particular, we show how Unruh-DeWitt detector models and Glauber's photodetection theory appear as limiting cases . Finally, with quantum correlation being the pivotal notion in relativistic quantum information and measurements, we highlight the role played by the CTP two-particle irreducible effective action which enables one to tap into the resources of non-equilibrium quantum field theory for our stated purpose.