论文标题
关于Cr Orbifolds上的Szegő内核的奇异性
On the singularities of the Szegő kernels on CR orbifolds
论文作者
论文摘要
在本文中,我们研究了给定紧凑连接的可定向的Cr Orbifold的Szegő内核的微局部特性,其Kohn Laplacian具有封闭范围。如果某些几何条件保持真实,则可以满足最后一个假设,例如在平滑情况下。作为应用程序,我们提供了Kodaira-Bailey定理的纯粹分析证明,并解释了如何将CR版本概括为量化通勤,并减少到Orbifolds。
In this paper we study the microlocal properties of the Szegő kernel of a given compact connected orientable CR orbifold whose Kohn Laplacian has closed range. This last assumption is satisfied if certain geometric conditions hold true, as in the smooth case. As applications, we give a pure analytic proof of Kodaira-Bailey theorem and explain how to generalize a CR version of quantization commutes with reduction to orbifolds.