论文标题
N2NSKIP:使用神经元间跳过连接学习高度稀疏的网络
N2NSkip: Learning Highly Sparse Networks using Neuron-to-Neuron Skip Connections
论文作者
论文摘要
深度神经网络的过度参数性质导致在低端设备上的部署过程中具有相当大的障碍,并具有时间和空间限制。使用迭代修剪培训方案稀疏DNN的网络修剪策略通常在计算上很昂贵。结果,在训练之前,在初始化时修剪的技术变得越来越流行。在这项工作中,我们提出了神经元到神经元的跳过连接,这些连接是稀疏的加权跳过连接,以增强修剪的DNN的整体连通性。遵循初步修剪步骤,在修剪网络的单个神经元/通道之间随机添加N2NSKIP连接,同时保持网络的整体稀疏性。我们证明,与没有N2NSKIP连接的修剪的网络相比,修剪网络中的N2NSKIP连接具有明显优越的性能,尤其是在高稀疏度水平上。此外,我们提出了基于热扩散的连接分析,以定量确定修剪网络相对于参考网络的连通性。我们评估了方法对在初始化时修剪修剪的两种不同初步修剪方法的功效,并通过利用N2NSKIP连接引起的增强连接性来始终获得卓越的性能。
The over-parametrized nature of Deep Neural Networks leads to considerable hindrances during deployment on low-end devices with time and space constraints. Network pruning strategies that sparsify DNNs using iterative prune-train schemes are often computationally expensive. As a result, techniques that prune at initialization, prior to training, have become increasingly popular. In this work, we propose neuron-to-neuron skip connections, which act as sparse weighted skip connections, to enhance the overall connectivity of pruned DNNs. Following a preliminary pruning step, N2NSkip connections are randomly added between individual neurons/channels of the pruned network, while maintaining the overall sparsity of the network. We demonstrate that introducing N2NSkip connections in pruned networks enables significantly superior performance, especially at high sparsity levels, as compared to pruned networks without N2NSkip connections. Additionally, we present a heat diffusion-based connectivity analysis to quantitatively determine the connectivity of the pruned network with respect to the reference network. We evaluate the efficacy of our approach on two different preliminary pruning methods which prune at initialization, and consistently obtain superior performance by exploiting the enhanced connectivity resulting from N2NSkip connections.