论文标题

优化的Dirac Woods-Saxon基础协变量功能理论

Optimized Dirac Woods-Saxon basis for covariant density functional theory

论文作者

Zhang, K. Y., Pan, C., Zhang, S. Q.

论文摘要

近年来,伍兹 - 撒克逊人的基础在非依赖主义和协变量的功能理论中取得了巨大的成功。然而,由于其非分析性质,木材撒克逊人的应用在数值上是复杂的,并且计算耗时。在本文中,基于连续体(DRHBC)中变形的相对论Hartree-Bogoliubov理论,我们详细介绍了有关Dirac Sea基础空间的收敛性。提出了优化的狄拉克木材 - 撒克逊基础,其相应的电位接近核平均场。结果表明,与原始的相比,收敛所需的优化迪拉克木材撒克逊基础基础的基础空间大大降低。特别是,它不需要包含狄拉克海中连续体的基础。优化木材撒克逊基础的应用将大大减少计算资源,以进行大规模密度功能计算。

The Woods-Saxon basis has achieved great success in both nonrelativistic and covariant density functional theories in recent years. Due to its nonanalytical nature, however, applications of the Woods-Saxon basis are numerically complicated and computationally time consuming. In this paper, based on the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc), we check in detail the convergence with respect to the basis space in the Dirac sea. An optimized Dirac Woods-Saxon basis is proposed, whose corresponding potential is close to the nuclear mean field. It is shown that the basis space of the optimized Dirac Woods-Saxon basis required for convergence is substantially reduced compared with the original one. In particular, it does not need to contain the bases from continuum in the Dirac sea. The application of the optimized Woods-Saxon basis would greatly reduce computing resource for large-scale density functional calculations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源