论文标题

半导体缺陷检测通过混合经典 - 量词深度学习

Semiconductor Defect Detection by Hybrid Classical-Quantum Deep Learning

论文作者

Yang, YuanFu, Sun, Min

论文摘要

随着人工智能和自主驾驶技术的快速发展,对半导体的需求预计将大大增加。但是,半导体制造和新技术的开发的大量扩展将带来许多缺陷晶片。如果未正确检查这些缺陷晶片,则对这些缺陷晶片的无效半导体处理将对我们的环境产生额外影响,例如二氧化碳的发射过多和能源消耗。在本文中,我们利用量子计算的信息处理优势来促进缺陷学习缺陷审查(DLDR)。我们提出了一种经典的量子杂种算法,用于近期量子处理器的深度学习。通过调整在其上实现的参数,由我们的框架驱动的量子电路学习给定的DLDR任务,包括晶圆缺陷地图分类,缺陷模式分类和热点检测。此外,我们探索具有不同表达和纠缠能力的参数化量子电路。这些结果可用于构建未来的路线图,以开发基于电路的量子深度学习,以进行半导体缺陷检测。

With the rapid development of artificial intelligence and autonomous driving technology, the demand for semiconductors is projected to rise substantially. However, the massive expansion of semiconductor manufacturing and the development of new technology will bring many defect wafers. If these defect wafers have not been correctly inspected, the ineffective semiconductor processing on these defect wafers will cause additional impact to our environment, such as excessive carbon dioxide emission and energy consumption. In this paper, we utilize the information processing advantages of quantum computing to promote the defect learning defect review (DLDR). We propose a classical-quantum hybrid algorithm for deep learning on near-term quantum processors. By tuning parameters implemented on it, quantum circuit driven by our framework learns a given DLDR task, include of wafer defect map classification, defect pattern classification, and hotspot detection. In addition, we explore parametrized quantum circuits with different expressibility and entangling capacities. These results can be used to build a future roadmap to develop circuit-based quantum deep learning for semiconductor defect detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源