论文标题
SSDPT:在机器状况监控中用于异常声音检测的自我监管的双路线变压器
SSDPT: Self-Supervised Dual-Path Transformer for Anomalous Sound Detection in Machine Condition Monitoring
论文作者
论文摘要
机器状况监测的异常声音检测在行业4.0的发展中具有很大的潜力。但是,这些机器的异常声音通常在正常情况下不可用。因此,所采用的模型必须学习具有正常声音的声音表示,并在测试时检测异常声音。在本文中,我们提出了一个自我监督的双路线变压器(SSDPT)网络,以检测机器监视中的异常声音。 SSDPT网络将声学特征分为细分市场,并采用了几个DPT块来进行时间和频率建模。 DPT块使用注意模块交替建模有关分段声特征的频率和时间组件的交互式信息。为了解决缺乏异常声音的问题,我们采用一种自我监督的学习方法来训练网络正常的声音。具体而言,这种方法随机掩盖并重建声学特征,并共同将机器身份信息分类以提高异常声音检测的性能。我们在Dcase2021 Task2数据集上评估了我们的方法。实验结果表明,与当前的异常声音检测方法相比,SSDPT网络的谐波平均值AUC得分显着增加。
Anomalous sound detection for machine condition monitoring has great potential in the development of Industry 4.0. However, these anomalous sounds of machines are usually unavailable in normal conditions. Therefore, the models employed have to learn acoustic representations with normal sounds for training, and detect anomalous sounds while testing. In this article, we propose a self-supervised dual-path Transformer (SSDPT) network to detect anomalous sounds in machine monitoring. The SSDPT network splits the acoustic features into segments and employs several DPT blocks for time and frequency modeling. DPT blocks use attention modules to alternately model the interactive information about the frequency and temporal components of the segmented acoustic features. To address the problem of lack of anomalous sound, we adopt a self-supervised learning approach to train the network with normal sound. Specifically, this approach randomly masks and reconstructs the acoustic features, and jointly classifies machine identity information to improve the performance of anomalous sound detection. We evaluated our method on the DCASE2021 task2 dataset. The experimental results show that the SSDPT network achieves a significant increase in the harmonic mean AUC score, in comparison to present state-of-the-art methods of anomalous sound detection.