论文标题
使用卡尔曼过滤的持续时间交通流量较短
Short Duration Traffic Flow Prediction Using Kalman Filtering
论文作者
论文摘要
该研究检查了使用Kalman滤波技术(KFT)(一种计算过滤方法)来预测短期交通流量的数量。短期流量预测是交通管理和运输系统运行的重要工具。短期流量值结果可用于划分路线指导和高级旅行者信息系统的旅行时间估算。尽管KFT已经测试过均匀的流量,但其在异质交通方面的效率尚未研究。这项研究是在索班芭芭(Sobhanbagh)清真寺附近达卡的米尔普尔路(Mirpur Road)进行的。该流包含流量的异质组合,这意味着预测的不确定性。该命题方法使用Pykalman库在Python中执行。该库主要用于KFT框架中的高级数据库建模,该模型解决了不确定性。数据源自车辆的三个小时的交通计数。根据2005年孟加拉国公路和公路部(RHD)出版的几何设计标准手册,将异质的交通流量转换为同等的乘用车单元(PCU)。然后将从五分钟聚合获得的PCU用作建议的模型的数据集。命题模型的平均绝对百分比误差(MAPE)为14.62,表明KFT模型可以很好地预测。根平方百分比误差(RMSPE)显示出18.73%的精度,小于25%;因此,模型是可以接受的。开发的模型的R2值为0.879,表明它可以解释数据集中可变性的87.9%。如果在更长的时间内收集数据,则R2值可能接近1.0。
The research examined predicting short-duration traffic flow counts with the Kalman filtering technique (KFT), a computational filtering method. Short-term traffic prediction is an important tool for operation in traffic management and transportation system. The short-term traffic flow value results can be used for travel time estimation by route guidance and advanced traveler information systems. Though the KFT has been tested for homogeneous traffic, its efficiency in heterogeneous traffic has yet to be investigated. The research was conducted on Mirpur Road in Dhaka, near the Sobhanbagh Mosque. The stream contains a heterogeneous mix of traffic, which implies uncertainty in prediction. The propositioned method is executed in Python using the pykalman library. The library is mostly used in advanced database modeling in the KFT framework, which addresses uncertainty. The data was derived from a three-hour traffic count of the vehicle. According to the Geometric Design Standards Manual published by Roads and Highways Division (RHD), Bangladesh in 2005, the heterogeneous traffic flow value was translated into an equivalent passenger car unit (PCU). The PCU obtained from five-minute aggregation was then utilized as the suggested model's dataset. The propositioned model has a mean absolute percent error (MAPE) of 14.62, indicating that the KFT model can forecast reasonably well. The root mean square percent error (RMSPE) shows an 18.73% accuracy which is less than 25%; hence the model is acceptable. The developed model has an R2 value of 0.879, indicating that it can explain 87.9 percent of the variability in the dataset. If the data were collected over a more extended period of time, the R2 value could be closer to 1.0.