论文标题

Laakso空间中的最大定向衍生物

Maximal Directional Derivatives in Laakso Space

论文作者

Capolli, Marco, Pinamonti, Andrea, Speight, Gareth

论文摘要

我们研究了最大定向衍生物与Lipschitz函数的不同定向衍生物之间的联系。我们表明,Lipschitz函数的定向衍生物的最大性仅意味着仅对于$σ$孔子集的点而言。另一方面,除了$σ$孔的点外,到达固定点的距离是可以区分的。这种行为与先前研究的欧几里得空间和Carnot组的设置完全不同。

We investigate the connection between maximal directional derivatives and differentiability for Lipschitz functions defined on Laakso space. We show that maximality of a directional derivative for a Lipschitz function implies differentiability only for a $σ$-porous set of points. On the other hand, the distance to a fixed point is differentiable everywhere except for a $σ$-porous set of points. This behavior is completely different to the previously studied settings of Euclidean spaces and Carnot groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源