论文标题

显微镜图像中不完美标签的无缝迭代半监督校正

Seamless Iterative Semi-Supervised Correction of Imperfect Labels in Microscopy Images

论文作者

Elbatel, Marawan, Bornberg, Christina, Kattel, Manasi, Almar, Enrique, Marrocco, Claudio, Bria, Alessandro

论文摘要

体外测试是对医疗设备毒性进行动物测试的替代方法。检测细胞作为第一步,细胞专家根据显微镜下的细胞毒性等级评估细胞的生长。因此,人类疲劳在错误制造中起着作用,使使用深度学习吸引人。由于培训数据注释的高成本,需要一种无手动注释的方法。我们提出了对不完美标签(SISSI)的无缝迭代半监督校正(SISSI),这是一种以半监督方式训练具有嘈杂和缺失注释的对象检测模型的新方法。我们的网络从使用简单的图像处理算法生成的嘈杂标签中学习,这些算法在自训练期间迭代校正。由于伪标签中缺少边界框的性质,这会对训练产生负面影响,因此我们建议使用无缝克隆对动态生成的合成状图像进行训练。我们的方法成功地提供了一种自适应的早期学习校正技术来进行对象检测。事实证明,在分类和语义分割中应用的早期学习校正的组合被证明是比通常的半监督方法在三个不同的读者中使用> 15%的AP和> 20%的AR。我们的代码可在https://github.com/marwankefah/sissi上找到。

In-vitro tests are an alternative to animal testing for the toxicity of medical devices. Detecting cells as a first step, a cell expert evaluates the growth of cells according to cytotoxicity grade under the microscope. Thus, human fatigue plays a role in error making, making the use of deep learning appealing. Due to the high cost of training data annotation, an approach without manual annotation is needed. We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI), a new method for training object detection models with noisy and missing annotations in a semi-supervised fashion. Our network learns from noisy labels generated with simple image processing algorithms, which are iteratively corrected during self-training. Due to the nature of missing bounding boxes in the pseudo labels, which would negatively affect the training, we propose to train on dynamically generated synthetic-like images using seamless cloning. Our method successfully provides an adaptive early learning correction technique for object detection. The combination of early learning correction that has been applied in classification and semantic segmentation before and synthetic-like image generation proves to be more effective than the usual semi-supervised approach by > 15% AP and > 20% AR across three different readers. Our code is available at https://github.com/marwankefah/SISSI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源