论文标题

基于卷积结合的少量射击缺陷检测技术

Convolutional Ensembling based Few-Shot Defect Detection Technique

论文作者

Karmakar, Soumyajit, Banerjee, Abeer, Gidde, Prashant Sadashiv, Saurav, Sumeet, Singh, Sanjay

论文摘要

在过去的几年中,很少有学习的领域取得了重大改善。这种学习范式已经显示出对挑战性检测的具有挑战性的问题的令人鼓舞的结果,在这种情况下,一般任务是应对重型阶级失衡。我们的论文提出了一种新的方法来进行几次分类,在该方法中,我们采用了多种预训练的卷积模型的知识基础,这些卷积模型是我们提出的几杆框架的骨干。我们的框架使用一种新颖的结合技术来提高准确性,同时大大降低了总参数计数,从而为实时实现铺平了道路。我们使用功率线缺陷检测数据集执行广泛的超参数搜索,并获得5-fay 5-Shot任务的精度为92.30%。在不进一步调整的情况下,我们使用现有的最新方法评估了我们的模型,并胜过它们。

Over the past few years, there has been a significant improvement in the domain of few-shot learning. This learning paradigm has shown promising results for the challenging problem of anomaly detection, where the general task is to deal with heavy class imbalance. Our paper presents a new approach to few-shot classification, where we employ the knowledge-base of multiple pre-trained convolutional models that act as the backbone for our proposed few-shot framework. Our framework uses a novel ensembling technique for boosting the accuracy while drastically decreasing the total parameter count, thus paving the way for real-time implementation. We perform an extensive hyperparameter search using a power-line defect detection dataset and obtain an accuracy of 92.30% for the 5-way 5-shot task. Without further tuning, we evaluate our model on competing standards with the existing state-of-the-art methods and outperform them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源