论文标题

部分掌握认知诊断模型

Partial-Mastery Cognitive Diagnosis Models

论文作者

Shang, Zhuoran, Erosheva, Elena A., Xu, Gongjun

论文摘要

认知诊断模型(CDM)是一个离散潜在属性模型的家族,在教育和心理认知诊断评估中充当统计基础。 CDM的目的是基于观察到的一组设计诊断项目的反应,以对个体的潜在属性进行细粒度的推断。在文献中,CDM通常假定项目需要掌握特定的潜在属性,并且每个属性都是完全掌握的,或者不是由给定主题掌握的。我们提出了一类新的模型,部分掌握CDM(PM-CDMS),该模型通过允许为每个感兴趣的属性提供部分掌握水平来概括CDM。我们证明PM-CDM可以表示为受限制的潜在类模型。依靠潜在的班级表示,我们提出了贝叶斯的估计方法。我们提出了模拟研究,以证明参数恢复,研究模型错误指定对部分掌握的影响,并开发从业人员可以使用的诊断工具,以在CDM和PM-CDMS之间进行决定。我们使用两个真实测试数据的示例 - 分数减法和英语测试 - 证明使用PM-CDM不仅可以改善与CDM相比的模型拟合,而且还可以在属性掌握的结论中显着差异。我们得出的结论是,PM-CDM可以通过提供有关需要学习的技能和技能的详细个人级别信息,从而导致更有效的补救计划。

Cognitive diagnosis models (CDMs) are a family of discrete latent attribute models that serve as statistical basis in educational and psychological cognitive diagnosis assessments. CDMs aim to achieve fine-grained inference on individuals' latent attributes, based on their observed responses to a set of designed diagnostic items. In the literature, CDMs usually assume that items require mastery of specific latent attributes and that each attribute is either fully mastered or not mastered by a given subject. We propose a new class of models, partial mastery CDMs (PM-CDMs), that generalizes CDMs by allowing for partial mastery levels for each attribute of interest. We demonstrate that PM-CDMs can be represented as restricted latent class models. Relying on the latent class representation, we propose a Bayesian approach for estimation. We present simulation studies to demonstrate parameter recovery, to investigate the impact of model misspecification with respect to partial mastery, and to develop diagnostic tools that could be used by practitioners to decide between CDMs and PM-CDMs. We use two examples of real test data -- the fraction subtraction and the English tests -- to demonstrate that employing PM-CDMs not only improves model fit, compared to CDMs, but also can make substantial difference in conclusions about attribute mastery. We conclude that PM-CDMs can lead to more effective remediation programs by providing detailed individual-level information about skills learned and skills that need to study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源