论文标题
弱协调的阴离子真的是由离子液体增塑的三元固体聚合物电解质的圣杯吗?协调阴离子以营救锂离子移动性
Are Weakly Coordinating Anions Really the Holy Grail of Ternary Solid Polymer Electrolytes Plasticized by Ionic Liquids? Coordinating Anions to the Rescue of the Lithium Ion Mobility
论文作者
论文摘要
锂盐具有低配位阴离子(例如BIS(Trifluoromethanesulfonyl)酰亚胺)(TFSI)的锂盐一直是基于PEO的“干”聚合物电解质的最先进的三十年。用基于TFSI的离子液体(ILS)塑造PEO以形成三元固体聚合物电解质(TSPE)会增加电导率和LI $^+$扩散率。但是,与“干燥”对应物相比,Li $^+$运输机构不受影响,并且基本上与聚合物宿主矩阵的动态相结合,该矩阵限制了li $^+$运输改进。因此,特此提出了一个范式转变:利用更协调的阴离子,例如三氟甲磺酰基fonyl-n-cyanoamide(TFSAM),能够与PEO与PEO竞争Li $^+$ $求解以加速Li $^+$运输,并达到更高的Li $^+$^+$ $^+$ Transfelence编号。通过实验方法探测了二进制和三元TFSAM电解质的LI-TFSAM相互作用,并在最近的计算结果的背景下进行了讨论。在基于PEO的TSPE中,TFSAM急剧加速了Li $^+$传输(增加了600 $ \%$ \%$ \%$和Li $^+$电导率的200-300 $ \%$),计算机模拟表明,LITHIUM DYNALICS有效地从Polymer到anion Dynamics有效地重新耦合。最后,在LFP $ || $ LI金属电池中成功应用了这种协调阴离子的这种概念,从而增强了容量的保留率(300个周期后86 $ \%$ \%$),并在2C时提高了速率性能。
Lithium salts with low coordinating anions like bis(trifluoromethanesulfonyl)imide (TFSI) have been the state-of-the-art for PEO-based 'dry' polymer electrolytes for three decades. Plasticizing PEO with TFSI-based ionic liquids (ILs) to form ternary solid polymer electrolytes (TSPEs) increases conductivity and Li$^+$ diffusivity. However, the Li$^+$ transport mechanism is unaffected compared to their 'dry' counterpart and essentially coupled to the dynamics of the polymer host matrix, which limits Li$^+$ transport improvement. Thus, a paradigm shift is hereby suggested: The utilization of more coordinating anions such as trifluoromethanesulfonyl-N-cyanoamide (TFSAM), able to compete with PEO for Li$^+$ solvation to accelerate the Li$^+$ transport and reach higher Li$^+$ transference number. The Li-TFSAM interaction in binary and ternary TFSAM-based electrolytes was probed by experimental methods and discussed in the context of recent computational results. In PEO-based TSPEs, TFSAM drastically accelerates the Li$^+$ transport (increased Li$^+$ transference number by 600$\%$ and Li$^+$ conductivity by 200-300$\%$) and computer simulations reveal that lithium dynamics are effectively re-coupled from polymer to anion dynamics. Finally, this concept of coordinating anions in TSPEs was successfully applied in LFP$||$Li metal cells leading to enhanced capacity retention (86$\%$ after 300 cycles) and an improved rate performance at 2C.