论文标题

散射理论具有规则和奇异的扰动

Scattering theory with both regular and singular perturbations

论文作者

Mantile, Andrea, Posilicano, Andrea

论文摘要

我们为散射夫妇$(a_b,a)$的散射矩阵提供了渐近完整性标准和表示公式,其中$ a $ a $ a $ a $ a_b $均为selfAdexchaint Operator,$ a_b $正式对应于添加到$ a $ a $ a $ a $ a $ a $ a $ a a_b $。 In particular, our abstract results apply to the couple $(Δ_B,Δ)$, where $Δ$ is the free self-adjoint Laplacian in $L^2(\mathbb{R}^3)$ and $Δ_B$ is a self-adjoint operator in a class of Laplacians with both a regular perturbation, given by a short-range potential, and a singular one describing boundary conditions (like Dirichlet, Neumann在一个开放的,有界的Lipschitz域的边界处,半透明的$δ$和$δ'$的$δ$)。结果取决于$ a_b $的极限吸收原理和类似于krein的分辨率差异$( - a_b+z)^{ - 1} - ( - a+z)^{ - 1} $,在拉普拉斯(Laplacian)的情况下(在这里,kato-rellich perecriest)和唱歌的情况下,将其相等的脚步(在这里,在这里,在这里都足够)。

We provide an asymptotic completeness criterion and a representation formula for the scattering matrix of the scattering couple $(A_B,A)$, where both $A$ and $A_B$ are self-adjoint operator and $A_B$ formally corresponds to adding to $A$ two terms, one regular and the other singular. In particular, our abstract results apply to the couple $(Δ_B,Δ)$, where $Δ$ is the free self-adjoint Laplacian in $L^2(\mathbb{R}^3)$ and $Δ_B$ is a self-adjoint operator in a class of Laplacians with both a regular perturbation, given by a short-range potential, and a singular one describing boundary conditions (like Dirichlet, Neumann and semi-transparent $δ$ and $δ'$ ones) at the boundary of a open, bounded Lipschitz domain. The results hinge upon a limiting absorption principle for $A_B$ and a Krein-like formula for the resolvent difference $(-A_B+z)^{-1}-(-A+z)^{-1}$ which puts on an equal footing the regular (here, in the case of the Laplacian, a Kato-Rellich potential suffices) and the singular perturbations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源