论文标题
通过单个fMRI体积学习的多模式脑疾病分类与功能相互作用学习
Multimodal Brain Disease Classification with Functional Interaction Learning from Single fMRI Volume
论文作者
论文摘要
在神经影像分析中,fMRI可以很好地评估没有明显的结构性病变的脑疾病的功能变化。迄今为止,大多数基于深度学习的功能磁共振成像研究已采用功能连通性(FC)作为疾病分类的基本特征。但是,FC是根据感兴趣的预定义区域的时间序列计算的,并忽略了每个体素中包含的详细信息。使用FC的另一个缺点是训练深层模型的样本量有限。 FC的低表示能力导致临床实践的表现不佳,尤其是在处理涉及多种类型的视觉信号和脑部疾病文本记录的多模式医学数据时。为了克服fMRI功能方式中的这个瓶颈问题,我们提出了Brainformer,这是一种用单个FMRI体积的脑部疾病分类的端到端功能相互作用学习方法。与传统的深度学习方法不同,在FC上构建卷积和变压器不同,Brainformer通过对fMRI信号的功能相互作用来了解使用3D卷积的每个体素内的局部提示,并捕获遥远地区之间的全球相关性,并通过从浅层层到深层层的全球注意力机制来捕获全球相关性。同时,Brainformer可以处理多模式医学数据,包括fMRI量,结构MRI,FC特征和表型数据,以实现更全面的脑部疾病诊断。我们在五个独立的多站点数据集上评估了关于自闭症,阿尔茨海默氏病,抑郁症,注意力缺陷多动障碍和头痛障碍的脑形。结果证明了其具有多模式特征诊断的多种脑疾病的有效性和普遍性。脑形物可以在临床实践中促进基于神经影像学的诊断的精确性,并激发未来的功能磁共振成像分析研究。
In neuroimaging analysis, fMRI can well assess the function changes for brain diseases with no obvious structural lesions. To date, most deep-learning-based fMRI studies have employed functional connectivity (FC) as the basic feature for disease classification. However, FC is calculated on time series of predefined regions of interest and neglects detailed information contained in each voxel. Another drawback of using FC is the limited sample size for the training of deep models. The low representation ability of FC leads to poor performance in clinical practice, especially when dealing with multimodal medical data involving multiple types of visual signals and textual records for brain diseases. To overcome this bottleneck problem in the fMRI feature modality, we propose BrainFormer, an end-to-end functional interaction learning method for brain disease classification with single fMRI volume. Unlike traditional deep learning methods that construct convolution and transformers on FC, BrainFormer learns the functional interaction from fMRI signals, by modeling the local cues within each voxel with 3D convolutions and capturing the global correlations among distant regions with specially designed global attention mechanisms from shallow layers to deep layers. Meanwhile, BrainFormer can deal with multimodal medical data including fMRI volume, structural MRI, FC features and phenotypic data to achieve more comprehensive brain disease diagnosis. We evaluate BrainFormer on five independent multi-site datasets on autism, Alzheimer's disease, depression, attention deficit hyperactivity disorder and headache disorders. The results demonstrate its effectiveness and generalizability for multiple brain diseases diagnosis with multimodal features. BrainFormer may promote precision of neuroimaging-based diagnosis in clinical practice and motivate future studies on fMRI analysis.