论文标题
分析形状和环境对深网的面部识别性能的影响
Analyzing the Impact of Shape & Context on the Face Recognition Performance of Deep Networks
论文作者
论文摘要
在本文中,我们分析了面部图像中基本身份的基本3D形状如何扭曲其整体外观,尤其是从深面识别的角度来看。正如在流行的训练数据增强方案中所做的那样,我们以随机选择或最合适的3D面部模型的形式渲染真实和合成的面部图像,以产生基本身份的新视图。我们比较了这些图像产生的深度特征,以评估这些效果图引入原始身份的扰动。我们以各种程度的面部偏航进行了这种分析,基本身份的性别和种族各不相同。此外,我们调查在这些渲染图像中添加某种形式的上下文和背景像素,当用作训练数据时,进一步改善了面部识别模型的下游性能。我们的实验证明了面部形状在准确的面部匹配中的重要性,并支持了上下文数据对网络训练的重要性。
In this article, we analyze how changing the underlying 3D shape of the base identity in face images can distort their overall appearance, especially from the perspective of deep face recognition. As done in popular training data augmentation schemes, we graphically render real and synthetic face images with randomly chosen or best-fitting 3D face models to generate novel views of the base identity. We compare deep features generated from these images to assess the perturbation these renderings introduce into the original identity. We perform this analysis at various degrees of facial yaw with the base identities varying in gender and ethnicity. Additionally, we investigate if adding some form of context and background pixels in these rendered images, when used as training data, further improves the downstream performance of a face recognition model. Our experiments demonstrate the significance of facial shape in accurate face matching and underpin the importance of contextual data for network training.