论文标题

一种新颖的增强的卷积神经网络,具有极限学习机器:心理学实践中的面部情感识别

A Novel Enhanced Convolution Neural Network with Extreme Learning Machine: Facial Emotional Recognition in Psychology Practices

论文作者

Banskota, Nitesh, Alsadoon, Abeer, Prasad, P. W. C., Dawoud, Ahmed, Rashid, Tarik A., Alsadoon, Omar Hisham

论文摘要

面部情感识别是识别心理学用来诊断患者的重要工具之一。面部和面部情感识别是机器学习卓越的领域。在不受约束的环境中,面部情绪识别是由于不同环境,例如照明条件,姿势变化,偏航运动和遮挡而引起的数字图像处理的开放挑战。深度学习方法已显示出图像识别的显着改善。但是,准确性和时间仍然需要改进。这项研究旨在在训练期间提高面部情绪识别的准确性,并使用Extreme Learning Machine(CNNeelm)改进的卷积神经网络减少处理时间。该系统需要(CNNeelm)提高培训期间图像注册的准确性。此外,该系统通过拟议的CNNeelm模型认识到六种面部情感快乐,悲伤,厌恶,恐惧,惊喜和中立。该研究表明,总体面部情绪识别精度比具有改良的随机梯度下降(SGD)技术的最先进的解决方案提高了2%。借助Extreme Learning Machine(ELM)分类器,处理时间从113毫秒降至65ms,可以从20fps的视频剪辑中平滑地对每个帧进行分类。使用预先训练的InceptionV3模型,建议使用JAFFE,CK+和FER2013表达数据集训练所提出的CNNeelm模型。模拟结果显示出准确性和处理时间的显着改善,使该模型适合视频分析过程。此外,该研究还解决了处理面部图像所需的大量处理时间的问题。

Facial emotional recognition is one of the essential tools used by recognition psychology to diagnose patients. Face and facial emotional recognition are areas where machine learning is excelling. Facial Emotion Recognition in an unconstrained environment is an open challenge for digital image processing due to different environments, such as lighting conditions, pose variation, yaw motion, and occlusions. Deep learning approaches have shown significant improvements in image recognition. However, accuracy and time still need improvements. This research aims to improve facial emotion recognition accuracy during the training session and reduce processing time using a modified Convolution Neural Network Enhanced with Extreme Learning Machine (CNNEELM). The system entails (CNNEELM) improving the accuracy in image registration during the training session. Furthermore, the system recognizes six facial emotions happy, sad, disgust, fear, surprise, and neutral with the proposed CNNEELM model. The study shows that the overall facial emotion recognition accuracy is improved by 2% than the state of art solutions with a modified Stochastic Gradient Descent (SGD) technique. With the Extreme Learning Machine (ELM) classifier, the processing time is brought down to 65ms from 113ms, which can smoothly classify each frame from a video clip at 20fps. With the pre-trained InceptionV3 model, the proposed CNNEELM model is trained with JAFFE, CK+, and FER2013 expression datasets. The simulation results show significant improvements in accuracy and processing time, making the model suitable for the video analysis process. Besides, the study solves the issue of the large processing time required to process the facial images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源