论文标题

超越固定模拟;随机建模的现代方法

Beyond Stationary Simulation; Modern Approaches to Stochastic Modelling

论文作者

Shamsipour, Pejman, Kourkounakis, Tedd, Aghaee, Amin, Meshkinnejad, Rouzbeh, Zaveri, Manit, Hood, Shawn

论文摘要

随机和条件模拟方法已有效地产生具有相同发生概率的空间数值模型的现实实现和模拟。这些方法的应用在地球科学的整个领域都非常有价值,因为它们能够模拟采样的研究数据。这种随机方法也已被采用到地统计领域之外的其他领域,尤其是在计算和数据科学界内。随机模拟的经典技术主要由固定方法组成,因为它们的模拟速度和数学简单性。但是,现代计算的进步现在允许实施更先进的非平稳模拟方法,包括多个变化的结构,并允许更准确和更现实的模拟。由于这些计算中的某些可能仍然很慢,因此机器学习技术的应用,即生成对抗网络(GAN)可用于超越以前的模拟生成速度并允许更大的参数化。这项工作提出了三种随机模拟方法:使用非平稳协方差,多点仿真和条件gan的随机模拟。 SPDE方法用作基准比较。使用合成数据的实验用于展示每种方法在维持非平稳结构和条件数据方面的有效性。还介绍了一项实施非平稳协方差的案例研究,该案例研究来自位于上省的La ceinture de Roches de la la la la la la la vertes vertes。

Stochastic and conditional simulation methods have been effective towards producing realistic realizations and simulations of spatial numerical models that share equal probability of occurrence. Application of these methods are valuable throughout the domain of earth science for their ability to simulate sampled study data. Such stochastic methods have also been adopted into other fields outside of geostatistics domains, especially within the computing and data science community. Classical techniques for stochastic simulation have primarily consisted of stationary methods due to their brisk simulation speed and mathematical simplicity. However, advances in modern computing now allow for the implementation of more advanced non-stationary simulation methods, consisting of multiple varying structures, and allowing for much more accurate and realistic simulations. As some of these calculations may still be slow, the application of machine learning techniques, namely the Generative Adversarial Network (GAN) can be used to surpass previous simulation generation speeds and allows for greater parameterization. This work presents three stochastic simulation methods: stochastic simulation using non-stationary covariance, multipoint simulation, and conditional GANs. An SPDE method was used as a benchmark comparison. Experiments using synthetic data are used to showcase the effectiveness of each of these methods at maintaining non-stationary structures and conditioned data. A case study implementing non-stationary covariances is also presented on real geochemical samples coming from La Ceinture de roches vertes de la Haute-Eastmain, located in the Superior Province.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源