论文标题

用于空间分区问题的模因算法

Memetic algorithms for Spatial Partitioning problems

论文作者

Biswas, Subhodip, Chen, Fanglan, Chen, Zhiqian, Lu, Chang-Tien, Ramakrishnan, Naren

论文摘要

空间优化问题(SOP)的特征是管理决策变量,目标和/或约束功能的空间关系。在本文中,我们专注于一种称为空间分区的特定类型的SOP,这是一个组合问题,这是由于存在离散空间单位。精确的优化方法不会随问题的大小而扩展,尤其是在可行的时间限制内。这促使我们开发基于人群的元启发式学来解决此类SOP。但是,这些基于人群的方法使用的搜索操作员主要是为实参与者连续优化问题而设计的。为了使这些方法适应SOP,我们将域知识应用于设计空间意识的搜索操作员,以在保留空间约束的同时有效地通过离散的搜索空间进行搜索。为此,我们提出了一种简单而有效的算法,称为基于群的空间模因算法(空间),并在学校(RE)区域问题上进行测试。对现实世界数据集进行了详细的实验研究,以评估空间的性能。此外,进行消融研究以了解空间各个组成部分的作用。此外,我们讨论空间〜如何在现实生活计划过程及其对不同方案的适用性并激发未来的研究方向有帮助。

Spatial optimization problems (SOPs) are characterized by spatial relationships governing the decision variables, objectives, and/or constraint functions. In this article, we focus on a specific type of SOP called spatial partitioning, which is a combinatorial problem due to the presence of discrete spatial units. Exact optimization methods do not scale with the size of the problem, especially within practicable time limits. This motivated us to develop population-based metaheuristics for solving such SOPs. However, the search operators employed by these population-based methods are mostly designed for real-parameter continuous optimization problems. For adapting these methods to SOPs, we apply domain knowledge in designing spatially-aware search operators for efficiently searching through the discrete search space while preserving the spatial constraints. To this end, we put forward a simple yet effective algorithm called swarm-based spatial memetic algorithm (SPATIAL) and test it on the school (re)districting problem. Detailed experimental investigations are performed on real-world datasets to evaluate the performance of SPATIAL. Besides, ablation studies are performed to understand the role of the individual components of SPATIAL. Additionally, we discuss how SPATIAL~is helpful in the real-life planning process and its applicability to different scenarios and motivate future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源