论文标题
社交网络结构和复杂传染从人口遗传学角度传播
Social network structure and the spread of complex contagions from a population genetics perspective
论文作者
论文摘要
思想,行为和观点通过社交网络传播。如果传播到新个体的概率是个人影响邻居的非线性函数,那么这种传播过程就会成为“复杂的传染”。这种非线性通常不会出现在物理传播的感染中,而是会出现时会出现,当传播的概念受到游戏理论考虑(例如,对于策略或行为的选择)或心理效应,例如社会增强和其他形式的同伴影响(例如,对于思想,偏好或观点))。在这里,我们研究了这种复杂传染的随机动力学如何受到潜在网络结构的影响。由对真实社交网络的复杂流行病进行模拟的动机,我们提出了一个一般框架,用于分析基于人口遗传学数学工具的任意非线性采用概率的传染统计。我们的框架提供了一种统一的方法,该方法说明了复杂传播的几个关键特性:更强的社区结构和网络稀疏性可以显着增强传播,而广泛的分布却抑制了选择的效果。最后,我们表明,某些结构特征可以表现出关键值,从而划定政权,在这种情况下,全球流行病是任意大小的网络可能成为可能的。我们的结果使基因竞争在人群中的竞争与思想和思想世界中的模因之间的相似之处。我们的工具通过社会影响提供了有关信息,行为和思想传播的见解,并强调了宏观网络结构在确定其命运中的作用。
Ideas, behaviors, and opinions spread through social networks. If the probability of spreading to a new individual is a non-linear function of the fraction of the individuals' affected neighbors, such a spreading process becomes a "complex contagion". This non-linearity does not typically appear with physically spreading infections, but instead can emerge when the concept that is spreading is subject to game theoretical considerations (e.g. for choices of strategy or behavior) or psychological effects such as social reinforcement and other forms of peer influence (e.g. for ideas, preferences, or opinions). Here we study how the stochastic dynamics of such complex contagions are affected by the underlying network structure. Motivated by simulations of complex epidemics on real social networks, we present a general framework for analyzing the statistics of contagions with arbitrary non-linear adoption probabilities based on the mathematical tools of population genetics. Our framework provides a unified approach that illustrates intuitively several key properties of complex contagions: stronger community structure and network sparsity can significantly enhance the spread, while broad degree distributions dampen the effect of selection. Finally, we show that some structural features can exhibit critical values that demarcate regimes where global epidemics become possible for networks of arbitrary size. Our results draw parallels between the competition of genes in a population and memes in a world of minds and ideas. Our tools provide insight into the spread of information, behaviors, and ideas via social influence, and highlight the role of macroscopic network structure in determining their fate.