论文标题
在某些双曲线组的商组上
On some quotient groups of hyperbolic groups
论文作者
论文摘要
本文介绍了“ a.yu.ol'shanskii定义关系的几何形状”中介绍的结果的一些概括,以无环状双曲线群为例。特别是,事实证明,对于每个无环扭转的双曲线群,都存在一个非亚伯利亚扭转的群体,其中所有适当的亚组都是循环的,并且任何两个的交叉都不小。
This paper describes some generalizations of the results presented in the book "Geometry of defining Relations in Groups" , of A.Yu.Ol'shanskii to the case of non-cyclic torsion-free hyperbolic groups. In particular, it is proved that for every non-cyclic torsion-free hyperbolic group, there exists a non-Abelian torsion-free quotient group in which all proper subgroups are cyclic, and the intersection of any two of them is not trivial.