论文标题

决策SINCNET:决策的神经认知模型,这些模型可预测神经信号的认知过程

Decision SincNet: Neurocognitive models of decision making that predict cognitive processes from neural signals

论文作者

Sun, Qinhua Jenny, Vo, Khuong, Lui, Kitty, Nunez, Michael, Vandekerckhove, Joachim, Srinivasan, Ramesh

论文摘要

在心理实验期间,可以使用选择反应时间数据观察人类决策行为。该数据的漂移扩散模型由维纳(Wiener)的第一邮箱时间(WFPT)分布组成,并通过认知参数描述:漂移速率,边界分离和起点。这些估计的参数是神经科学家的感兴趣,因为它们可以映射到决策过程的特征(例如速度,谨慎和偏见),并且与大脑活动有关。观察到的RT模式还反映了从神经动力学介导的试验到试验的认知过程的可变性。我们调整了基于SINCNET的浅神经网络体系结构,以使用每个实验试验中的EEG信号符合漂移扩散模型。该模型由SINCNET层,深度空间卷积层和两个单独的FC层组成,可预测每个试验的漂移速率和边界,并并行。 SINCNET层参数化了内核,以直接学习应用于脑电图数据以预测漂移和边界参数的带通滤波器的低和高截止频率。在训练过程中,通过最大程度地降低了给定试验RT的WFPT分布的负模可能性函数来更新模型参数。我们为每个参与者开发了单独的决策SINCNET模型,执行了两种强制选择任务。我们的结果表明,与训练和测试数据集中的中位数估计相比,漂移和边界的单试估计在预测RT方面的性能更好,这表明我们的模型可以成功地使用脑电图特征来估计有意义的单试扩散模型参数。此外,浅层SINCNET体系结构确定了与证据积累和谨慎相关的信息处理的时间窗口以及反映每个参与者中这些过程的EEG频段。

Human decision making behavior is observed with choice-response time data during psychological experiments. Drift-diffusion models of this data consist of a Wiener first-passage time (WFPT) distribution and are described by cognitive parameters: drift rate, boundary separation, and starting point. These estimated parameters are of interest to neuroscientists as they can be mapped to features of cognitive processes of decision making (such as speed, caution, and bias) and related to brain activity. The observed patterns of RT also reflect the variability of cognitive processes from trial to trial mediated by neural dynamics. We adapted a SincNet-based shallow neural network architecture to fit the Drift-Diffusion model using EEG signals on every experimental trial. The model consists of a SincNet layer, a depthwise spatial convolution layer, and two separate FC layers that predict drift rate and boundary for each trial in-parallel. The SincNet layer parametrized the kernels in order to directly learn the low and high cutoff frequencies of bandpass filters that are applied to the EEG data to predict drift and boundary parameters. During training, model parameters were updated by minimizing the negative log likelihood function of WFPT distribution given trial RT. We developed separate decision SincNet models for each participant performing a two-alternative forced-choice task. Our results showed that single-trial estimates of drift and boundary performed better at predicting RTs than the median estimates in both training and test data sets, suggesting that our model can successfully use EEG features to estimate meaningful single-trial Diffusion model parameters. Furthermore, the shallow SincNet architecture identified time windows of information processing related to evidence accumulation and caution and the EEG frequency bands that reflect these processes within each participant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源