论文标题
一种一般方法,用于1D马赛克障碍模型的确切局部过渡点
A general approach to the exact localized transition points of 1D mosaic disorder models
论文作者
论文摘要
在本文中,我们提出了镶嵌模型和非摩西模型之间的一般对应关系,可用于获得镶嵌物的精确溶液。这种关系不仅适用于准晶模型,还适用于安德森模型。尽管特定模型的本地化属性不同,但此关系具有统一形式。将我们的方法应用于马赛克安德森模型,我们发现有一组离散的扩展状态。最后,我们还为马赛克缓慢变化的潜在模型和马赛克甘尼山 - 帕克利 - 戴斯·萨尔马模型提供了一般的分析迁移率。
In this paper, we present a general correspondence between the mosaic and non-mosaic models, which can be used to obtain the exact solution for the mosaic ones. This relation holds not only for the quasicrystal models, but also for the Anderson models. Despite the different localization properties of the specific models, this relationship shares a unified form. Applying our method to the mosaic Anderson models, we find that there is a discrete set of extended states. At last, we also give the general analytical mobility edge for the mosaic slowly varying potential models and the mosaic Ganeshan-Pixley-Das Sarma models.