论文标题
在高频的MEMS陀螺仪中热弹性阻尼
Thermoelastic Damping in MEMS Gyroscopes at High Frequencies
论文作者
论文摘要
微电机电系统(MEMS)陀螺仪广泛使用,例如在现代汽车和消费者应用中,需要信号稳定性和在相当恶劣的环境条件下的准确性。在许多用例中,必须在高频下的大型外部负载下保证设备可靠性。传感器对这种外部负载的敏感性在很大程度上取决于结构的高频机械模式的阻尼或质量因子。在本文中,我们通过将有限元模拟与测量相关的温度范围的质量因子进行比较,研究了热弹性阻尼对几种高频模式的影响。我们测量真空中不同温度的质量因子,以提取多晶Mems设备的相关热弹性材料参数。我们的仿真结果表明与测量数量达成了很好的一致性,因此证明了我们在MEMS设计过程中为预测目的的方法的适用性。总体而言,我们能够唯一地识别热弹性效应,并显示出它们对工业MEMS陀螺仪高频模式阻尼的重要性。我们的方法是通用的,因此很容易适用于在纳米和微机械系统中使用许多可能应用的任何机械结构。
Microelectromechanical systems (MEMS) gyroscopes are widely used, e.g. in modern automotive and consumer applications, and require signal stability and accuracy in rather harsh environmental conditions. In many use cases, device reliability must be guaranteed under large external loads at high frequencies. The sensitivity of the sensor to such external loads depends strongly on the damping, or rather quality factor, of the high frequency mechanical modes of the structure. In this paper, we investigate the influence of thermoelastic damping on several high frequency modes by comparing finite element simulations with measurements of the quality factor in an application-relevant temperature range. We measure the quality factors over different temperatures in vacuum, to extract the relevant thermoelastic material parameters of the polycrystalline MEMS device. Our simulation results show a good agreement with the measured quantities, therefore proving the applicability of our method for predictive purposes in the MEMS design process. Overall, we are able to uniquely identify the thermoelastic effects and show their significance for the damping of the high frequency modes of an industrial MEMS gyroscope. Our approach is generic and therefore easily applicable to any mechanical structure with many possible applications in nano- and micromechanical systems.