论文标题
Hermitian对称对的抗球形Hecke类别
The anti-spherical Hecke categories for Hermitian symmetric pairs
论文作者
论文摘要
我们计算$ p $ -kazhdan-lusztig多项式用于遗传学对称对,并证明相应的抗球形Hecke类别类别是标准的Koszul。我们证明,可以将组合不变性的猜想提升为这些Hecke类别亚贵族之间的分级莫里塔等效水平。
We calculate the $p$-Kazhdan--Lusztig polynomials for Hermitian symmetric pairs and prove that the corresponding anti-spherical Hecke categories categories are standard Koszul. We prove that the combinatorial invariance conjecture can be lifted to the level of graded Morita equivalences between subquotients of these Hecke categories.