论文标题

钓鱼巨大的黑洞二进制文件与泰晤士河

Fishing massive black hole binaries with THAMES

论文作者

Sharma, Kritti, Chandra, Koustav, Pai, Archana

论文摘要

密集环境中的分层合并是中间质量黑洞(IMBH)二进制系统的主要地层通道之一。我们预计所得的大规模二元系统将表现出质量不对称性。发射的重力波(GW)具有高阶模式的显着贡献,因此由于不同模式的叠加而引起的复杂波形形态。此外,IMBH二进制文件在Ligo检测器中表现出较低的合并频率和较短的信号持续时间,这增加了将其错误分类为短期嘈杂的故障的风险。深度学习算法可以训练以区分嘈杂的故障与短的GW瞬变。我们介绍了$ \ mathtt {thames} $ - 一种基于深度学习的端到端信号检测算法,用于来自准圆形近边缘的GW信号,在高级GW探测器中,质量不对称的IMBH二进制文件。我们的研究表明,它的表现优于基于滤波器的$ \ mathtt {pycbc} $搜索更高的质量不对称,几乎边缘的IMBH二进制文件。质量比$ q \ in(5,10)$的敏感体积时间产品的最大增益为5.24(2.92),而$ \ mathtt {pycbc-imbh} $($ \ sathtt {$ \ mathtt {pycbc-hm} $)以100年的虚假警报率在100年内搜索。与宽阔的$ \ mathtt {pycbc} $搜索相比,此因子为$ \ sim100 $(in(10,18)$)。这种体积敏感性飞跃的原因之一是它可以区分具有复杂波形形态和嘈杂瞬态的信号的能力,清楚地证明了深度学习算法在探测引力波天文学领域中复杂信号形态中的潜力。在当前的训练集中,相对于$ \ mathtt {pycbc} $,$ \ mathtt {thames} $略有表现,基于质量比$ q \ q \ in(5,10)$和检测器框架总质量$ m_t $ m_t(1+z)$ q \ in(1+z)\ in(100,200)

Hierarchical mergers in a dense environment are one of the primary formation channels of intermediate-mass black hole (IMBH) binary system. We expect that the resulting massive binary system will exhibit mass asymmetry. The emitted gravitational-wave (GW) carry significant contribution from higher-order modes and hence complex waveform morphology due to superposition of different modes. Further, IMBH binaries exhibit lower merger frequency and shorter signal duration in the LIGO detector which increases the risk of them being misclassified as short-duration noisy glitches. Deep learning algorithms can be trained to discriminate noisy glitches from short GW transients. We present the $\mathtt{THAMES}$ -- a deep-learning-based end-to-end signal detection algorithm for GW signals from quasi-circular nearly edge-on, mass asymmetric IMBH binaries in advanced GW detectors. Our study shows that it outperforms matched-filter based $\mathtt{PyCBC}$ searches for higher mass asymmetric, nearly edge-on IMBH binaries. The maximum gain in the sensitive volume-time product for mass ratio $q \in (5, 10)$ is by a factor of 5.24 (2.92) against $\mathtt{PyCBC-IMBH}$ ($\mathtt{PyCBC-HM}$) search at a false alarm rate of 1 in 100 years. Compared to the broad $\mathtt{PyCBC}$ search this factor is $\sim100$ for the $q \in (10,18)$. One of the reasons for this leap in volumetric sensitivity is its ability to discriminate between signals with complex waveform morphology and noisy transients, clearly demonstrating the potential of deep learning algorithms in probing into complex signal morphology in the field of gravitational wave astronomy. With the current training set, $\mathtt{THAMES}$ slightly underperforms with respect to $\mathtt{PyCBC}$-based searches targeting intermediate-mass black hole binaries with mass ratio $q \in (5, 10)$ and detector frame total mass $M_T(1+z) \in (100,200)~M_\odot$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源