论文标题

瞄准恶劣的环境:灵活和自适应资源管理的新框架

Aiming in Harsh Environments: A New Framework for Flexible and Adaptive Resource Management

论文作者

Zou, Jiaqi, Liu, Rui, Wang, Chenwei, Cui, Yuanhao, Zou, Zixuan, Sun, Songlin, Adachi, Koichi

论文摘要

严酷的环境在网络策略上构成了一系列独特的挑战。在这种情况下,尚未对环境对网络资源和长期无人看管的维护产生影响。为了应对这些挑战,我们提出了一个灵活而自适应的资源管理框架,该框架结合了环境意识功能。特别是,我们提出了一个新的网络体系结构,并针对传统网络组件介绍了新功能。拟议的架构的新颖性包括基于深度学习的环境资源预测模块和一个自组织的服务管理模块。具体而言,通过使用预测模块可以预测各种环境条件下可用的网络资源。然后基于预测,开发了一种面向环境的资源分配方法来优化系统实用程序。为了证明拟议的新功能的有效性和效率,我们通过案例研究中的实验检查了该方法。最后,我们在恶劣的环境中介绍了一些有希望的资源管理方向,可以从本文中扩展。

The harsh environment imposes a unique set of challenges on networking strategies. In such circumstances, the environmental impact on network resources and long-time unattended maintenance has not been well investigated yet. To address these challenges, we propose a flexible and adaptive resource management framework that incorporates the environment awareness functionality. In particular, we propose a new network architecture and introduce the new functionalities against the traditional network components. The novelties of the proposed architecture include a deep-learning-based environment resource prediction module and a self-organized service management module. Specifically, the available network resource under various environmental conditions is predicted by using the prediction module. Then based on the prediction, an environment-oriented resource allocation method is developed to optimize the system utility. To demonstrate the effectiveness and efficiency of the proposed new functionalities, we examine the method via an experiment in a case study. Finally, we introduce several promising directions of resource management in harsh environments that can be extended from this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源