论文标题
通用担为同态连续体的同态群体
The homeomorphism group of the universal Knaster continuum
论文作者
论文摘要
我们定义了一个投射的Fraissé家族,其极限近似于通用的旋转连续体。这个家庭如此以至于$ \ textrm {aut}(\ mathbb {k})$fraissé限制的自动形态是该组的密集亚组,$ \ textrm {homeo}(k)(k)$,同构的同型knaster knaster conteruums conteruums conteruum。 我们证明,$ \ textrm {aut}(\ mathbb {k})$和$ \ textrm {homeo}(k)$均具有通用的最小流量同型同态同粒子对自由阿贝尔集团的通用最小流量,这是可计数的许多发电机。该计算涉及证明这两组都包含一个开放的正常亚组,这是极为正常的。
We define a projective Fraissé family whose limit approximates the universal Knaster continuum. The family is such that the group $\textrm{Aut}(\mathbb{K})$ of automorphisms of the Fraissé limit is a dense subgroup of the group, $\textrm{Homeo}(K)$, of homeomorphisms of the universal Knaster continuum. We prove that both $\textrm{Aut}(\mathbb{K})$ and $\textrm{Homeo}(K)$ have universal minimal flow homeomorphic to the universal minimal flow of the free abelian group on countably many generators. The computation involves proving that both groups contain an open, normal subgroup which is extremely amenable.