论文标题
高动态范围成像的深度渐进特征聚合网络
Deep Progressive Feature Aggregation Network for High Dynamic Range Imaging
论文作者
论文摘要
高动态范围(HDR)成像是图像处理中的一项重要任务,旨在在不同照明的场景中生成良好的图像。尽管现有的多曝光融合方法取得了令人印象深刻的结果,但在动态场景中生成高质量的HDR图像仍然很困难。首要的挑战是由低动态范围图像与衰减区域中的扭曲内容之间的物体运动引起的幽灵伪像。在本文中,我们提出了一个深厚的渐进式特征聚合网络,用于改善动态场景中的HDR成像质量。为了解决对象运动的问题,我们的方法隐含地采样了高度对应的特征,并以粗略的方式将它们汇总以进行对齐。此外,我们的方法基于离散的小波变换采用密集连接的网络结构,该结构旨在将输入特征分解为多频带,并自适应地恢复损坏的内容。实验表明,与其他有希望的HDR成像方法相比,我们所提出的方法可以在不同场景下实现最先进的性能。具体而言,我们方法生成的HDR图像包含清洁剂和更详细的内容,并且变形较少,从而可以更好地视觉质量。
High dynamic range (HDR) imaging is an important task in image processing that aims to generate well-exposed images in scenes with varying illumination. Although existing multi-exposure fusion methods have achieved impressive results, generating high-quality HDR images in dynamic scenes is still difficult. The primary challenges are ghosting artifacts caused by object motion between low dynamic range images and distorted content in under and overexposed regions. In this paper, we propose a deep progressive feature aggregation network for improving HDR imaging quality in dynamic scenes. To address the issues of object motion, our method implicitly samples high-correspondence features and aggregates them in a coarse-to-fine manner for alignment. In addition, our method adopts a densely connected network structure based on the discrete wavelet transform, which aims to decompose the input features into multiple frequency subbands and adaptively restore corrupted contents. Experiments show that our proposed method can achieve state-of-the-art performance under different scenes, compared to other promising HDR imaging methods. Specifically, the HDR images generated by our method contain cleaner and more detailed content, with fewer distortions, leading to better visual quality.