论文标题

使用物理信息的神经网络模拟和应用Covid-19隔室模型

Simulation and application of COVID-19 compartment model using physics-informed neural network

论文作者

Ke, Jinhuan, Ma, Jiahao, Yin, Xiyu, Singh, Robin

论文摘要

Covid-19大流行在全球范围内具有破坏性和不可逆转的影响,但是传统的流行病学建模方法,例如易感感染的被感染的(SIR)模型在预测最新的大流行状况方面表现出有限的有效性。在这项工作中,引入了易感性接种疫苗接触的侵蚀性死亡(SVEIDR)模型及其变体 - 老年和疫苗接种结构的SVEIDR模型 - 用于编码社会接触对不同年龄段和疫苗接种状态的影响。然后,我们在模拟和现实世界数据上实施了物理信息的神经网络(PINN)。 PINN模型可以对COVID-19隔室模型的动态传播,预测和参数优化进行强有力的分析。这些模型的相对根平方误(RRMSE)为$ <4 \%$ $ $ $ $ $,并提供$γ= 0.0130 $,$λ= 0.0001 $,和$ρ= 0.0037 $的孵化,死亡和恢复速率,以及$ <0.0037 $的$ <0.0037 $,均为$ <0.35 $ <%$ <%$ <%$ <0.0035 $。为了进一步提高模型性能,可以包括时间变化的参数,例如疫苗接种,传输和孵育率。我们的实施强调了Pinn作为预测现实世界数据的可靠候选方法,并且可以应用于其他感兴趣的隔间模型变体。

COVID-19 pandemic has had a disruptive and irreversible impact globally, yet traditional epidemiological modeling approaches such as the susceptible-infected-recovered (SIR) model have exhibited limited effectiveness in forecasting of the up-to-date pandemic situation. In this work, susceptible-vaccinated-exposed-infected-dead-recovered (SVEIDR) model and its variants -- aged and vaccination-structured SVEIDR models -- are introduced to encode the effect of social contact for different age groups and vaccination status. Then, we implement the physics-informed neural network (PiNN) on both simulated and real-world data. The PiNN model enables robust analysis of the dynamic spread, prediction, and parameter optimization of the COVID-19 compartmental models. The models exhibit relative root mean square error (RRMSE) of $<4\%$ for all components and provide incubation, death, and recovery rates of $γ= 0.0130$, $λ=0.0001$, and $ρ=0.0037$, respectively, for the first 310 days of the epidemic in the US with RRMSE of $<0.35\%$ for all components. To further improve the model performance, temporally varying parameters can be included, such as vaccination, transmission, and incubation rates. Our implementation highlights PiNN as a reliable candidate approach for forecasting real-world data and can be applied to other compartmental model variants of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源